Algebra Prelim

May 28, 2008

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

(1) Let V be a vector space of dimension 10 over some field K. Argue that there is an automorphism f on V such that $f^{10}:=f \circ f \circ \ldots \circ f$ (ten f 's) is the identity map on V and such that f^{i} is not the identity for $1 \leq i \leq 9$.
(2) Let (G, \cdot) be a group with identity element e. Suppose that $a \neq e$ is an element of G such that $a^{6}=a^{10}=e$. Determine the order of a.
(3) For a group G denote its center by $Z(G)$.

Prove or disprove (by giving an example) the statement:
For each group G and each subgroup H of G one has $Z(H)=H \cap Z(G)$.
(4) Show that there is no simple group of order 56 .
(5) Show that every ideal of $\mathbb{Z} \times \mathbb{Z}$ is principal.
(6) Let \mathbb{F}_{3} be the field with 3 elements. Compute the monic greatest common divisor d of the polynomials

$$
f=x^{3}+2, \quad g=2 x^{2}+x+1 \in \mathbb{F}_{3}[x] .
$$

Also give a Bezout equation for d, that is, find polynomials $a, b \in \mathbb{F}_{3}[x]$ such that $d=a f+b g$.
(7) Factor the following (possibly irreducible) polynomials into their irreducible factors in the given polynomial ring.
a) $f:=2 x^{7}-8 x^{6}+4 x^{3}-12 x+4 \in \mathbb{Z}[x]$.
b) $g:=x^{3}+1 \in \mathbb{F}_{3}[x]$.
c) $h:=x^{7}-1 \in \mathbb{Q}[x]$.
d) $k:=3 y^{3} x^{3}-4 y x^{3}+6 y^{2} x^{2}+2 x+1 \in \mathbb{Q}[x, y]$.
(8) Let $f=x^{3}-3 x+4 \in \mathbb{Q}[x]$ and let K be the splitting field of f inside \mathbb{C}.
a) Determine the Galois group of f over \mathbb{Q} up to isomorphism.
b) Show that $K=\mathbb{Q}(a, i)$, where a is any root of f in \mathbb{C}.
(9) Let F be a field of order $q:=p^{r}$, where p is a prime number and $r \in \mathbb{N}:=\{1,2,3, \ldots\}$, and let $f \in F[x]$ be an irreducible polynomial of degree $n>1$.
a) Argue that $K:=F[x] /(f)$ is a splitting field of f over F.
b) Determine all roots of f in K explicitly (remember, the elements of K are cosets).
c) Determine the size of the splitting field of $\left(x^{2}+1\right)\left(x^{2}+2 x+2\right) \in \mathbb{F}_{3}[x]$.

