Algebra Prelim, June 4, 2021

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

Let \mathbb{Z} , \mathbb{N} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{F}_q denote the sets of integers, non-negative integers, rational numbers, real numbers, complex numbers, and the finite field of order q, respectively.

(1) For a real $n \times n$ matrix M and a real number $\lambda \in \mathbb{R}$ we let $\operatorname{eig}(M, \lambda)$ denote the space of vectors $\mathbf{v} \in \mathbb{R}^n$ such that $M\mathbf{v} = \lambda \mathbf{v}$. Find a 4×4 matrix A with

$$\ker (A) = \langle \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \rangle, \quad \operatorname{eig} (A, -1) = \langle \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \rangle, \quad \operatorname{eig} (A, 2) = \langle \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \rangle$$

- (2) Let V be a finite-dimensional vector space, and let $S, T : V \to V$ be linear maps. Prove that $\dim(\ker(S \circ T)) \leq \dim(\ker(S)) + \dim(\ker(T))$.
- (3) Let G be a group of order m > 2. Show that G has a non-trivial automorphism. It may be helpful to consider the following cases separately.
 - a) G is non-abelian.
 - b) G is abelian and contains an element g with order > 2.
 - c) G is abelian and all non-identity elements of G have order 2.
- (4) Recall that a group G is said to be *solvable* if there is a finite sequence of subgroups:

$$\{1\} = G_0 \trianglelefteq G_1 \trianglelefteq \cdots \trianglelefteq G_{n-1} \trianglelefteq G_n = G,$$

with G_i normal in G_{i+1} , and such that each quotient group G_{i+1}/G_i is abelian.

- a) Show that a subgroup of a solvable group is solvable.
- b) Let D_n be the dihedral group of order 2n. Show that D_n is solvable.

(5) Let $R = \{a + 3b\sqrt{-1} \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$.

- a) Show that R is a domain.
- b) Show that R is not a UFD. (*Hint*: Consider $(1 + 3\sqrt{-1})(1 3\sqrt{-1}) = 10$.)

(6) Determine with proof if the following polynomials are irreducible.

- a) $x^4 + 3x^3 + x^2 2x + 1 \in \mathbb{Q}[x]$ b) $x^2y + xy^2 - x - y + 1 \in \mathbb{Q}[x, y]$
- (7) For $k \in \mathbb{N}_{>0}$ set $\zeta_k = e^{\frac{2\pi i}{k}} \in \mathbb{C}$. Let $n, m \in \mathbb{N}_{>0}$ with $\operatorname{GCD}(n, m) = 1$.
 - a) Show $\mathbb{Q}(\zeta_n, \zeta_m) = \mathbb{Q}(\zeta_{nm}).$
 - b) Show $\operatorname{Gal}(\mathbb{Q}(\zeta_n, \zeta_m)/\mathbb{Q}) \cong \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \times \operatorname{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q}).$
- (8) Determine the splitting field of the following polynomial over the given field. Justify your answer.
 - a) $f(x) = x^6 + 3 \in \mathbb{F}_7[x].$
 - b) $g(x) = x^5 + 2 \in \mathbb{F}_5[x].$
- (9) Let $\mathbb{K} \subseteq \mathbb{L}$ be a Galois extension and $G = \operatorname{Gal}(\mathbb{L}/\mathbb{K})$ with |G| = 44.
 - a) Determine the number of 11-Sylow subgroups of G.
 - b) Show there exists a surjective group homomorphism $\pi: G \to \mathbb{Z}/2\mathbb{Z}$.
 - c) Use (b) to show that there exists an intermediate field $\mathbb{K} \subseteq \mathbb{F} \subseteq \mathbb{L}$ such that $\mathbb{K} \subseteq \mathbb{F}$ is Galois and $[\mathbb{F} : \mathbb{K}] = 2$.