Preliminary Examination in Analysis

January 2021

Instructions

• This is a three-hour examination which consists of two parts: Advanced Calculus and Real or Complex Analysis.

• You should work problems from the section on advanced calculus and from the section of the option that you have chosen.

• You are to work a total of five problems (four mandatory problems and one optional problem).

- You must work the two mandatory problems from each part.
- Please indicate clearly on your test paper which optional problem is to be graded.

1

• Indicate clearly which theorems and definitions you are using.

Advanced Calculus, Mandatory Problems

1. Suppose $f: \mathbb{R} \to \mathbb{R}$ is continuous, and $\lim_{x \to \infty} f(x) = 1$. Show that

$$\lim_{b \to \infty} \frac{1}{b} \int_0^b f(x) \, dx = 1$$

2. Suppose $A, B \subset \mathbb{R}$ are nonempty and bounded above, and define

$$A + B := \{a + b \mid a \in A, b \in B\}$$

Show that $\sup(A + B) = \sup A + \sup B$.

Advanced Calculus, Optional Problems

3. Suppose $f:[0,1] \to \mathbb{R}$ is continuous. Show that for any $\epsilon > 0$, there exists M > 0 such that

$$|f(x) - f(y)| < M|x - y| + \epsilon$$

for all $x, y \in [0, 1]$.

4. Suppose f is positive and differentiable on \mathbb{R} , and that f' is bounded. Show that if $\int_0^\infty f(x) dx$ is finite then $\lim_{x \to \infty} f(x) = 0$.

Real Analysis, Mandatory Problems

1. (a). Let f be a real-valued function in \mathbb{R}^d . Define what it means for f to be (Lebesgue) measurable on \mathbb{R}^d .

(b). Let f and g be two real-valued functions on \mathbb{R}^d . Suppose that f is measurable on \mathbb{R}^d and g = f a.e. in \mathbb{R}^d . Use the definition in part (a) to show that g is measurable.

(c). Let $\{f_k\}$ be a sequence of real-valued measurable functions on \mathbb{R}^d . Suppose that $\lim_{k\to\infty} f_k(x)$ exists for a.e. $x \in \mathbb{R}^d$. Show that $g(x) := \lim_{k\to\infty} f_k(x)$ is measurable.

2. Let f be a Lebesgue integrable function in \mathbb{R}^d . Define

$$\widehat{f}(\xi) = \int_{\mathbb{R}^d} e^{-2\pi i \xi \cdot x} f(x) \, dx$$

for $\xi \in \mathbb{R}^d$. Show that \widehat{f} is a bounded continuous function in \mathbb{R}^d .

Real Analysis, Optional Problems

3. Let $\{f_k\}$ be a sequence of Lebesgue measurable functions defined on a measurable set $E \subset \mathbb{R}^d$ with $m(E) < \infty$. Suppose that for each $x \in E$,

$$M_x := \sup\left\{|f_k(x)| : k \ge 1\right\} < \infty.$$

Show that for each $\varepsilon > 0$, there exists a closed set $F_{\varepsilon} \subset E$ such that $m(E \setminus F_{\varepsilon}) < \varepsilon$ and

$$M := \sup \left\{ |f_k(x)| : x \in F_{\varepsilon} \text{ and } k \ge 1 \right\} < \infty.$$

4. Let f be a Lebesgue integrable function on \mathbb{R} . Prove that for any $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\int_{E} |f(x)| \, dx < \varepsilon \quad \text{whenever } E \subset \mathbb{R} \text{ is measurable and } m(E) < \delta.$$

Complex Analysis, Mandatory Problems

1. Compute the integral

$$\int_0^\infty \frac{x^2}{1+x^4} \, dx.$$

Provide all the details of your calculation.

2. Let $f : \mathcal{A} \to \mathbb{C}$ be analytic and suppose $B_R(z_0) := \{z \in \mathbb{C} \mid |z - z_0| < R\} \subset \mathcal{A}$. Let $S_n(z)$ be the *n*th-partial sum of the Taylor expansion of f about z_0 . Prove that there exists $M_f \geq 0$ so that for all $0 \leq r < R$,

$$|f(z) - S_n(z)| \le M_f \left(\frac{r}{R}\right)^{n+1} \frac{1}{1 - \left(\frac{r}{R}\right)}$$

if $|z - z_0| \leq r$. Provide an explicit formula for M_f showing how it depends on f, z_0 , and the parameters r, R.

Complex Analysis, Optional Problems

3. Find all entire functions f(z) satisfying the bound

$$|f(z)| \ge |z|,$$

for all $z \in \mathbb{C}$.

- 4. This is a problem on Laurent expansions.
 - (a). State a theorem on the existence and structure of the Laurent expansion of a function f in an annular region about z_0 given by $\{z \in \mathbb{C} \mid 0 \le r < |z z_0| < R\}$, for $0 \le r < R \le \infty$.
 - (b). Suppose a function f is analytic on the annulus about $z_0 = 0$ with r = 0 and R = 1. If f satisfies the bound

$$|f(z)| \le \frac{1}{|z|^{\frac{1}{2}}},$$

then prove that f has a removable singularity at $z_0 = 0$ and that f extends to an analytic function g on the disk |z| < 1 with $|g(z)| \le 1$.