Preliminary Examination in Analysis

January 2022

Instructions

- This is a three-hour examination which consists of two parts: Advanced Calculus and Real or Complex Analysis.
- You should work problems from the section on advanced calculus and from the section of the option that you have chosen.
- You are to work a total of five problems (four mandatory problems and one optional problem).
- You must work two mandatory problems from each part.
- Please indicate clearly on your test paper which optional problem is to be graded.
- Indicate clearly what theorems and definitions you are using.

Advanced Calculus, Mandatory Problems

1. Suppose that (S, d) is a metric space. Let $\left\{p_{n}\right\}$ be a sequence from S and suppose that $\sum_{n=1}^{\infty} d\left(p_{n}, p_{n+1}\right)$ is finite. Prove that $\left\{p_{n}\right\}$ is Cauchy in S.
2. Suppose that f is nonnegative and continuous on $[a, b]$ and that

$$
\int_{a}^{b} f(x) d x=0
$$

Prove that $f(x)=0$ on $[a, b]$.

Advanced Calculus, Optional Problems

3. $\left(2^{n}\right.$ Test) Suppose that $\left\{a_{n}\right\}$ is a nonincreasing sequence of nonnegative real numbers, i.e.,

$$
a_{1} \geq a_{2} \geq \ldots \geq a_{n} \geq \ldots \geq 0
$$

and that $\lim _{n \rightarrow \infty} a_{n}=0$. Show that $\sum_{n=1}^{\infty} a_{n}$ converges if and only if $\sum_{m=0}^{\infty} 2^{m} a_{2^{m}}$ converges.
4.
(a) Show that, if $\left\{f_{n}\right\}$ is a sequence of continuous functions and converges uniformly on $[a, b]$ to a function f, then f is also continuous on $[a, b]$.
(b) Give an example of a sequence $\left\{f_{n}\right\}$ of continuous functions on $[a, b]$ that converges pointwise to a function f so that f is not continuous.

Real Analysis, Mandatory Problems

1. Suppose that $E \subset \mathbb{R}^{d}$ is a measurable set. Let $h \in \mathbb{R}^{d}$, and define $E+h=$ $\{e+h, e \in E\}$. Show that $E+h$ is measurable, and that $m(E+h)=m(E)$.
2. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be an integrable function. For every $\alpha>0$, define $E_{\alpha}=\{x$: $|f(x)|>\alpha\}$.
i) Show that E_{α} is measurable for all $\alpha>0$.
ii) Show that

$$
\int_{\mathbb{R}^{d}}|f(x)| d x=\int_{0}^{\infty} m\left(E_{\alpha}\right) d \alpha .
$$

Real Analysis, Optional Problems

3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a nonnegative and integrable function so that $\int f d x=1$. Define

$$
g(x)=\sum_{n=1}^{\infty} f\left(3^{n} x\right)
$$

Compute $\int_{\mathbb{R}} g(x) d x$. Make sure to justify your steps!
4. Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is an absolutely continuous function, and that there is $M>0$ so that $\left|f^{\prime}(x)\right| \leq M$ for a.e. x. Let $g:[a, b] \rightarrow \mathbb{R}$ be a function of bounded variation. Show that $f \circ g:[a, b] \rightarrow \mathbb{R}$ is a function of bounded variation.

Complex Analysis, Mandatory Problems

1. Let $f(z)$ be an entire function. Suppose that the function $z \mapsto f(\bar{z})$ is also entire. Prove that $f(z)$ is constant.
2. Let $n \geq 2$ be a positive integer. Use the residue theorem to evaluate the integral

$$
\int_{0}^{\infty} \frac{1}{1+x^{n}} \mathrm{~d} x
$$

Hint: Use a wedge of angle $2 \pi / n$.

Complex Analysis, Optional Problems

3. Let f be an entire function. Suppose that there exists a positive integer n such that

$$
|f(z)| \geq|z|^{n} \text { for all }|z| \geq 2022
$$

Prove that f is a polynomial and that its degree is at least n.
4. Let $D=\{z \in \mathbb{C}:|z|<1\}$, and let $f: D \rightarrow D$ be an analytic function. Suppose that there exists $a \in D \backslash\{0\}$ such that $f(a)=f(-a)=0$. Prove that $|f(0)| \leq|a|^{2}$. What can you conclude if $|f(0)|=|a|^{2}$?

