Preliminary Examination in Analysis

June 7, 2021

Instructions

• This is a three-hour examination which consists of two parts: Advanced Calculus and Real or Complex Analysis.

• You should work problems from the section on advanced calculus and from the section of the option that you have chosen.

• You are to work a total of five problems (four mandatory problems and one optional problem).

- You must work the two mandatory problems from each part.
- Please indicate clearly on your test paper which optional problem is to be graded.

1

• Indicate clearly what theorems and definitions you are using.

Advanced Calculus, Mandatory Problems

1. Let f be a real-valued continuous function in $[0,\infty)$. Suppose that

$$\lim_{x \to \infty} f(x) = 0$$

Show that f is uniformly continuous on $[0, \infty)$.

- 2. Let $f_n: [0,1] \to \mathbb{R}$ be a sequence of continuous functions.
 - i) What does it mean for f_n to converge uniformly to $f: [0,1] \to \mathbb{R}$?
 - ii) Assume that f_n converges to f uniformly. Show that

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = \int_0^1 f(x) dx$$

Advanced Calculus, Optional Problems

3. Assume that A and B are nonempty subsets of $(0, \infty)$. Define

$$AB = \{ab : a \in A, b \in B\}$$

Show that

$$\sup(AB) = (\sup A)(\sup B)$$

4. Let $f : \mathbb{R} \to \mathbb{R}$ be a function so that f(1) = 42 and $|f(x) - f(y)| \le 100|x - y|^2$

for all $x, y \in \mathbb{R}$. Show that f(x) = 42 for all $x \in \mathbb{R}$.

Real Analysis, Mandatory Problems

1. Assume that $f: [0,1] \to \mathbb{R}$ is a continuous function. Define $f_n: [0,1] \to \mathbb{R}$ by $f_n(x) = f(x^n)$. Show that f_n is integrable, and compute $\lim_{n\to\infty} \int_{[0,1]} f_n(x) dx$

2. Let $f : \mathbb{R}^d \to \mathbb{R}^d$ be a Lipschitz function, i.e. there is M > 0 so that $|f(x) - f(y)| \le M|x - y|$ for all $x, y \in \mathbb{R}^d$.

i) Find a constant $\widetilde{M} > 0$ so that, for any cube Q, we have that

$$m_*(f(Q)) \le M|Q|$$

where m_* is the exterior measure.

ii) Show that for any $E \subset \mathbb{R}^d$ with m(E) = 0 we have that m(f(E)) = 0, where m is the Lebesgue measure.

Real Analysis, Optional Problems

3. Let f(x, y) be a nonnegative and measurable function in \mathbb{R}^2 . Suppose that for a.e. $x \in \mathbb{R}$, f(x, y) is finite for a.e. $y \in \mathbb{R}$. Show that for a.e. $y \in \mathbb{R}$, f(x, y) is finite for a.e. $x \in \mathbb{R}$.

4. Let $\{f_k\}$ be a sequence of nonnegative measurable functions on \mathbb{R} . Suppose that $f_k \to f$ and $f_k \leq f$ a.e. in \mathbb{R} . Show that

$$\int_{\mathbb{R}} f_k \, dx \to \int_{\mathbb{R}} f \, dx.$$

Complex Analysis, Mandatory Problems

1. Prove the following version of Hurwitz's Theorem:

Theorem: Suppose that $f_n : \mathcal{A} \subset \mathbb{C}$ is a sequence of functions analytic and nonvanishing on an open, connected subset \mathcal{A} . Suppose that $f_n \to f$ uniformly on any compact subset of \mathcal{A} . Then the limit functions f is either identically zero on \mathcal{A} or never zero on \mathcal{A} .

2. Evaluate the following integral:

$$\int_0^\infty \frac{\log x}{(x^2+1)^2} \, dx.$$

Make sure that you carefully describe all the steps.

Complex Analysis, Optional Problems

- 3. This problem concerns conformal maps.
 - **a:** Prove that there is no fractional linear transformation T satisfying $Tz = \overline{z}$ for all $z \in \mathbb{C}$.
 - **b:** Prove that the map $Tz = \overline{z}$, for $z \in \mathbb{D}$, the unit disk, is a conformal map of \mathbb{D} to itself. Characterize T as an element of the automorphism group of \mathbb{D} . (Recall the general form of any $S \in \operatorname{Aut}(\mathbb{D})$.)
 - c: What is the automorphism \widetilde{T} of the upper-half complex plane \mathbb{H} corresponding to the transformation in part (b). Describe the effect of \widetilde{T} geometrically. Recall that the map $S : \mathbb{H} \to \mathbb{D}$ is given by $Sz = (z i)(z + i)^{-1}$.

4. Let $\Omega \subset \mathbb{C}$ be a bounded region symmetric with respect to the real line \mathbb{R} : If $z \in \Omega$, then $\overline{z} \in \Omega$. Let $\Omega^{\pm} := \{z \in \Omega \mid \Im z > 0 \text{ or } \Im z < 0\}$, and let $\Sigma := \Omega \cap \mathbb{R}$. We suppose that $\Sigma = (a, b)$, for two finite real numbers a < b.

- a: Suppose $f: \Omega^+ \to \mathbb{C}$ is analytic on Ω^+ and continuous on $\Omega^+ \cup \Sigma$, and real on Σ . Construct a function \tilde{f} on Ω that is analytic on $\Omega^+ \cup \Omega^-$, continuous on Ω and real on Σ .
- **b:** Prove that f is analytic on Ω by applying Morera's Theorem on triangular contours in small disks centered at points $x_0 \in \Sigma$. Conclude that f admits an analytic extension $\tilde{f} : \Omega \to \mathbb{C}$.