Preliminary Examination in Analysis

June 7, 2021

Instructions

- This is a three-hour examination which consists of two parts: Advanced Calculus and Real or Complex Analysis.
- You should work problems from the section on advanced calculus and from the section of the option that you have chosen.
- You are to work a total of five problems (four mandatory problems and one optional problem).
- You must work the two mandatory problems from each part.
- Please indicate clearly on your test paper which optional problem is to be graded.
- Indicate clearly what theorems and definitions you are using.

Advanced Calculus, Mandatory Problems

1. Let f be a real-valued continuous function in $[0, \infty)$. Suppose that

$$
\lim _{x \rightarrow \infty} f(x)=0
$$

Show that f is uniformly continuous on $[0, \infty)$.
2. Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be a sequence of continuous functions.
i) What does it mean for f_{n} to converge uniformly to $f:[0,1] \rightarrow \mathbb{R}$?
ii) Assume that f_{n} converges to f uniformly. Show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f(x) d x
$$

Advanced Calculus, Optional Problems

3. Assume that A and B are nonempty subsets of $(0, \infty)$. Define

$$
A B=\{a b: a \in A, b \in B\}
$$

Show that

$$
\sup (A B)=(\sup A)(\sup B)
$$

4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function so that $f(1)=42$ and

$$
|f(x)-f(y)| \leq 100|x-y|^{2}
$$

for all $x, y \in \mathbb{R}$. Show that $f(x)=42$ for all $x \in \mathbb{R}$.

Real Analysis, Mandatory Problems

1. Assume that $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function. Define $f_{n}:[0,1] \rightarrow \mathbb{R}$ by $f_{n}(x)=f\left(x^{n}\right)$. Show that f_{n} is integrable, and compute $\lim _{n \rightarrow \infty} \int_{[0,1]} f_{n}(x) d x$
2. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a Lipschitz function, i.e. there is $M>0$ so that $|f(x)-f(y)| \leq$ $M|x-y|$ for all $x, y \in \mathbb{R}^{d}$.
i) Find a constant $\widetilde{M}>0$ so that, for any cube Q, we have that

$$
m_{*}(f(Q)) \leq \widetilde{M}|Q|
$$

where m_{*} is the exterior measure.
ii) Show that for any $E \subset \mathbb{R}^{d}$ with $m(E)=0$ we have that $m(f(E))=0$, where m is the Lebesgue measure.

Real Analysis, Optional Problems

3. Let $f(x, y)$ be a nonnegative and measurable function in \mathbb{R}^{2}. Suppose that for a.e. $x \in \mathbb{R}, f(x, y)$ is finite for a.e. $y \in \mathbb{R}$. Show that for a.e. $y \in \mathbb{R}, f(x, y)$ is finite for a.e. $x \in \mathbb{R}$.
4. Let $\left\{f_{k}\right\}$ be a sequence of nonnegative measurable functions on \mathbb{R}. Suppose that $f_{k} \rightarrow f$ and $f_{k} \leq f$ a.e. in \mathbb{R}. Show that

$$
\int_{\mathbb{R}} f_{k} d x \rightarrow \int_{\mathbb{R}} f d x
$$

Complex Analysis, Mandatory Problems

1. Prove the following version of Hurwitz's Theorem:

Theorem: Suppose that $f_{n}: \mathcal{A} \subset \mathbb{C}$ is a sequence of functions analytic and nonvanishing on an open, connected subset \mathcal{A}. Suppose that $f_{n} \rightarrow f$ uniformly on any compact subset of \mathcal{A}. Then the limit functions f is either identically zero on \mathcal{A} or never zero on \mathcal{A}.
2. Evaluate the following integral:

$$
\int_{0}^{\infty} \frac{\log x}{\left(x^{2}+1\right)^{2}} d x
$$

Make sure that you carefully describe all the steps.

Complex Analysis, Optional Problems

3. This problem concerns conformal maps.
a: Prove that there is no fractional linear transformation T satisfying $T z=\bar{z}$ for all $z \in \mathbb{C}$.
b: Prove that the map $T z=\bar{z}$, for $z \in \mathbb{D}$, the unit disk, is a conformal map of \mathbb{D} to itself. Characterize T as an element of the automorphism group of \mathbb{D}. (Recall the general form of any $S \in \operatorname{Aut}(\mathbb{D})$.)
c: What is the automorphism \widetilde{T} of the upper-half complex plane \mathbb{H} corresponding to the transformation in part (b). Describe the effect of \widetilde{T} geometrically. Recall that the map $S: \mathbb{H} \rightarrow \mathbb{D}$ is given by $S z=(z-i)(z+i)^{-1}$.
4. Let $\Omega \subset \mathbb{C}$ be a bounded region symmetric with respect to the real line \mathbb{R} : If $z \in \Omega$, then $\bar{z} \in \Omega$. Let $\Omega^{ \pm}:=\{z \in \Omega \mid \Im z>0$ or $\Im z<0\}$, and let $\Sigma:=\Omega \cap \mathbb{R}$. We suppose that $\Sigma=(a, b)$, for two finite real numbers $a<b$.
a: Suppose $f: \Omega^{+} \rightarrow \mathbb{C}$ is analytic on Ω^{+}and continuous on $\Omega^{+} \cup \Sigma$, and real on Σ. Construct a function \widetilde{f} on Ω that is analytic on $\Omega^{+} \cup \Omega^{-}$, continuous on Ω and real on Σ.
b: Prove that \widetilde{f} is analytic on Ω by applying Morera's Theorem on triangular contours in small disks centered at points $x_{0} \in \Sigma$. Conclude that f admits an analytic extension $\widetilde{f}: \Omega \rightarrow \mathbb{C}$.
