Preliminary Examination in Analysis

June 2022

Instructions

- This is a three-hour examination which consists of two parts: Advanced Calculus and Real or Complex Analysis.
- You should work problems from the section on advanced calculus and from the section of the option that you have chosen.
- You are to work a total of five problems (four mandatory problems and one optional problem).
- You must work two mandatory problems from each part.
- Please indicate clearly on your test paper which optional problem is to be graded.
- Indicate clearly what theorems and definitions you are using.

Advanced Calculus, Mandatory Problems

1. Let f be a continuous real-valued function on \mathbb{R} with

$$
\lim _{x \rightarrow \infty} f(x)=1 \text { and } \lim _{x \rightarrow-\infty} f(x)=0
$$

Show that f is uniformly continuous on \mathbb{R}.
2. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two bounded sequences of real numbers. Recall that

$$
\liminf _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(\inf \left\{a_{k} \mid k \geq n\right\}\right)
$$

a) Show that

$$
\liminf _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \geq \liminf _{n \rightarrow \infty} a_{n}+\liminf _{n \rightarrow \infty} b_{n}
$$

b) Show that if $\left\{b_{n}\right\}$ converges then

$$
\liminf _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\liminf _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}
$$

Advanced Calculus, Optional Problems

3. Consider the sequence defined recursively by

$$
a_{1}=1, \quad a_{n+1}=1-\frac{1}{2+a_{n}}=\frac{1+a_{n}}{2+a_{n}} .
$$

Prove that this sequence converges, and determine its limit.
4. Let φ be a continuous function in \mathbb{R} with compact support and let f be a bounded and uniformly continuous function in \mathbb{R}. Define

$$
f_{n}(x)=n \int_{\mathbb{R}} f(x-y) \varphi(n y) d y
$$

Show that $f_{n} \rightarrow \alpha f$ uniformly in \mathbb{R}, where

$$
\alpha=\int_{\mathbb{R}} \varphi(y) d y
$$

Real Analysis, Mandatory Problems

1. Let f, g be two Lebesgue integrable functions in \mathbb{R}^{d}. Assume that

$$
\int_{E} f(x) d x \leq \int_{E} g(x) d x
$$

for any measurable subset E of \mathbb{R}^{d}. Show that $f \leq g$ a.e. in \mathbb{R}^{d}.
2. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuously differentiable function whose derivative is bounded on \mathbb{R}, and $g: \mathbb{R} \rightarrow \mathbb{R}$ is Lebesgue integrable. Show that

$$
(f * g)(x):=\int_{\mathbb{R}} f(x-y) g(y) d y
$$

is a differentiable function on \mathbb{R}, and

$$
(f * g)^{\prime}(x)=\int_{\mathbb{R}} f^{\prime}(x-y) g(y) d y
$$

Real Analysis, Optional Problems

3. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is in $L^{1}(\mathbb{R})$. Show that

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f(x) \sin (n x) d x=0
$$

Hint: you may use the fact that step functions are dense in $L^{1}(\mathbb{R})$.
4. Let $\left\{f_{k}\right\}$ be a sequence of measurable functions defined on a measurable set $E \subset \mathbb{R}^{d}$ with $m(E)<\infty$. Suppose that for each $x \in E$,

$$
\sup \left\{\left|f_{k}(x)\right|: k \geq 1\right\}<\infty
$$

Show that for each $\epsilon>0$ there exists a closed set F such that $m(E \backslash F)<\epsilon$ and

$$
\sup \left\{\left|f_{k}(x)\right|: x \in F \text { and } k \geq 1\right\}<\infty
$$

Complex Analysis, Mandatory Problems

1. Use the residue theorem to evaluate the integral

$$
\int_{0}^{\infty} \frac{1}{\sqrt{x}\left(x^{2}+1\right)} \mathrm{d} x
$$

2. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function such that

$$
|f(z)| \leq|z|^{10.5} \text { for all }|z| \geq 100
$$

Prove that f is a polynomial and that its degree is at most 10 .

Complex Analysis, Optional Problems

3. Let D be the unit disk $\{z \in \mathbb{C}:|z|<1\}$. Find the number of solutions to the equation $e^{z}=10 z^{100}$ in D.
4. Suppose D is the unit disk $\{z \in \mathbb{C}:|z|<1\}$ and $f: D \rightarrow \mathbb{C}$ is a function with the property that f^{k} is analytic on D for all $k \in \mathbb{N}$ with $k>1$. Show that f is also analytic on D.
