
Preliminary Examination in Numerical Analysis

Jan. 9, 2004

Instructions:

1. The examination is for 3 hours.

2. The examination consists of two parts:
Part I: Matrix Theory and Numerical Linear Algebra
Part II: Introductory Numerical Analysis

3. There are three problem sets in each part. Work two out of the three problem sets
for each part.

4. All problem sets carry equal weights.
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PART I - Matrix Theory and Numerical Linear Algebra
(Work two of the three problem sets in this part)

Problem 1.

(a) Let A and δA be n × n matrices and let A be invertible. If η ≡ κ(A)‖δA‖
‖A‖ < 1, prove that

A + δA is invertible. Furthermore, if Ax = b and (A + δA)x̂ = b, prove that

‖x− x̂‖
‖x‖ ≤ κ(A)

1− η

‖δA‖
‖A‖

where ‖ · ‖ is any matrix operator norm and κ(A) is the condition number of A.
(You may use without proof that ‖(I −X)−1‖ ≤ (1− ‖X‖)−1 if ‖X‖ < 1.)

(b) Let A ∈ Rn×n be symmetric positive definite. Prove by induction on n that A has a Cholesky
factorization, namely there exists a lower triangular matrix G such that A = GGT .

Problem 2.

(a) Write down the QR algorithm (unshifted) for an n × n matrix A. Prove that the matrices
produced are all similar to the original matrix.

(b) Describe an algorithm to reduce a symmetric matrix to a tridiagonal matrix through a
sequence of orthogonal similarity transformations.

(c) Show that the tridiagonal form is preserved by the QR algorithm (an illustration using a
4× 4 tridiagonal matrix will be sufficient).

Problem 3. Let A ∈ Rm×n and b ∈ Rm (m ≥ n). Let A = UΣV T be the singular value
decomposition of A, where

Σ :=

(
Σ1 0
0 0

)
∈ Rm×n; Σ1 :=




σ1

. . .
σk




with σ1 ≥ · · · ≥ σk > 0 is k × k.

(a) Determine when Ax = b has no solution, exactly one solution, or infinitely many solutions.
Write down the solution or the solution set when it exists.

(b) Determine when the least squares problem

min
x∈Rn

‖Ax− b‖2. (1)

has exactly one solution, or infinitely many solutions. Write down the solution or the
solution set when it exists.
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Part II – Numerical Analysis
(Work two of the three problem sets in this part)

Problem 4. Suppose g(x) is a C1 function with a fixed point z, i. e. g(z) = z, and

|g′(z)| = α < 1

(a) Prove that a fixed point iteration will converge linearly to z from any point x0 sufficiently
close to z.

(b) What is the rate of convergence ?
(c) Perform one iteration of Newton’s method on the system:

x2
1 − 2x1 − x2 + 0.5 = 0

x2
1 + 4x2

2 − 4 = 0

starting at point (2, 0.25).

Problem 5. Outline the ideas and steps to derive a Gauss Formula

∫ 1

−1
f(x)dx =

n∑

i=0

Aiwif(xi)

which is exact for all the polynomials of degree ≤ 3 on [−1, 1].
(a) How many nodes (minimum number) are needed for Gauss Formula to be exact for all

the polynomials of degree ≤ 3, i.e., what is n? and why?
(b) Use a theorem about orthogonal polynomials and the fact that 1, x, x2 − 1

3 , x3 − 3
5x are

orthogonal on [−1, 1] with weight function wi = 1 to determine xi.
(c) Use method of undetermined coefficient to find Ai and write the Gauss Formula.

Problem 6. Where x′(t) = f(t, x), x(0) = x0 and fn = f(tn, xn), the formula

xn+1 − (1− c)xn − cxn−1 =
h

12
[(5− c)fn+1 + 8(1 + c)fn + (5c− 1)fn−1]

is known to be exact for all polynomials of degree m or less for all c.
(a) Determine c so that it will be exact for all polynomials of degree m + 1. Find c and m.
(b) Using the c found in (a), is this method stable? strongly stable? is this method consistent?

convergent?
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