Preliminary Examination in Numerical Analysis

January 2005

Instructions:

- Examination is 3 hours: 9am to noon
- Part I: Numerical Linear Algebra
- Part II: Numerical Analysis
- Each part has 3 problems, and 6 problems total. You must do Problems 2 and 4 , but have a choice of solving only 3 of the remaining 4 problems. Mark the problems that you wish to be graded in the table below (5 marks total).
- For problems with multiple parts, you may get full credit for a particular part using results of previous parts even though you fail to finish these previous parts

Problem No.	to be graded?	grade	
1			
2	$\sqrt{2}$		
3			
4	$\sqrt{ }$		
5			
6			
Total			

Part I. Numerical Linear Algebra

Problem 1. Least Square Problem. Let $A \in \mathbb{R}^{m \times n}$ and $m>n$. Outline at least two different numerical methods to solve

$$
\min _{x}\|A x-b\|_{2},
$$

and explain briefly their pros and cons.
Problem 2. Eigenvalue Computation. Let $A \in \mathbb{R}^{n \times n}$.

1. State the power method;
2. Present a convergence analysis of the power method, assuming that A is diagonalizable;
3. Is it possible to use this method to compute an eigenvalue that is near any given value μ ? If not, what would you do?
4. In MATLAB, eig (A) outputs all eigenvalues of A. How does it do that?

Problem 3. Orthogonal Projections.

1. Let $X \in \mathbb{R}^{m \times n}$ have full column rank. The orthogonal projection onto X 's column space is $P_{X}=X\left(X^{T} X\right)^{-1} X^{T}$, and $P_{X}^{\perp}=I-P_{X}$ is the orthogonal projection onto the orthogonal complement of X 's column space. Verify that $P_{X} X=X$ and $P_{X}^{\perp} X=0$.
2. Consider $Z_{1}={ }_{m_{12}}^{m_{11}}\binom{Z_{11}}{Z_{12}}, Z_{2}={ }_{{ }_{m} 22}^{m_{21}}\binom{Z_{21}}{Z_{22}}, Z={ }_{m_{21}}^{m_{21}}\left(\begin{array}{c}Z_{11} \\ Z_{21} \\ Z_{22}\end{array}\right)$, where $m_{12}=m_{21}$, and $Z_{12}=Z_{21}$ is the common part in Z_{1} and Z_{2}. Set

$$
P={ }_{m_{22}}^{m_{11}+m_{12}}\left(\begin{array}{cc}
m_{11}+m_{12} & m_{22} \\
P_{Z_{1}}^{\perp} & 0 \\
0 & 0
\end{array}\right)+{ }_{m_{12}+m_{22}}^{m_{11}}\left(\begin{array}{cc}
m_{11} & m_{12}+m_{22} \\
0 & 0 \\
0 & P_{Z_{2}}^{\perp}
\end{array}\right),
$$

Show that $P Z=0$.

Part II. Numerical Analysis

Problem 4.

1. Consider a variation of Newton's method in which only one derivative is needed: that is,

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{0}\right)}
$$

Find C and s such that $e_{n+1}=C e_{n}^{s}$, assuming it converges, where $e_{n}=x_{n}-x_{*}$ and x_{*} is the desired solution to $f(x)=0$.
2. Suppose that the bisection method is started with the interval $[10,35]$. How many steps should be taken to compute a root with relative accuracy no bigger than 10^{-12} ?
3. Suppose we are solving $\phi(z)=z$ for z, where $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$; and suppose $\|\phi(x)-z\| \leq\|x-z\|^{2}$ for $\|x-z\| \leq 1$. Show that there exists $\delta>0$ such that if $\left\|x_{0}-z\right\|<\delta$, then the sequence generated by $x_{n+1}=\phi\left(x_{n}\right)$ converges to z quadratically (i.e. order 2). (You may use the usual contraction mapping theorem.)

Problem 5.

1. Write the Newton interpolating polynomial $p_{3}(x)$ which interpolates the function $f(x)=2 \sin \left(\frac{\pi}{3} x\right)$ at points $x=0,1,2$ and 5 .
2. (continuing 1) what is a good upper bound for $\left|f(x)-p_{3}(x)\right|$ on $[0,5]$.
3. Prove that if f is a polynomial of degree k, then for $n>k$,

$$
f\left[x_{0}, x_{1}, \ldots, x_{n}\right]=0
$$

(Newton's divided difference formula).
4. Find a Least-Squares fit of the form $y=A x^{3}$, for the following data set, $f(-1)=-2, f(0)=-1, f(1)=4, f(2)=7$.

Problem 6.

1. What is the order of accuracy for Backward Euler method?
2. What is the absolute stability region for Backward Euler method? (Consider the Cauchy Problem $y^{\prime}=\lambda y, y(0)=1$.)
3. Derive the second-order Rung-Kutta formula

$$
\begin{aligned}
& x(t+h)=x(t)+\frac{1}{2}\left(F_{1}+F_{2}\right), \\
& \left\{\begin{array}{l}
F_{1}=h f(t, x), \\
F_{2}
\end{array}=h f\left(t+h, x+F_{1}\right) .\right.
\end{aligned}
$$

