Preliminary Examination in Numerical Analysis

Jan. 10, 2020

Instructions:

1. The examination is for 3 hours.
2. The examination consists of eight equally-weighted problems.
3. Attempt all problems.

Problem 1. If $A=\left[a_{i j}\right] \in R^{m \times n}$, show that $\|A\|_{\infty}=\max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|a_{i j}\right|$.
Problem 2. Let A, X and Y be $n \times n$ matrices such that A is invertible, $\|X-A\| \leq \epsilon\|A\|$ and $\|Y-A\| \leq \epsilon\|A\|$ for some $\epsilon>0$. If $\epsilon \kappa(A)<1$, prove that X and Y are invertible and

$$
\left\|X^{-1}-Y^{-1}\right\| \leq \frac{2 \epsilon \kappa(A)}{1-\epsilon \kappa(A)} \min \left\{\left\|X^{-1}\right\|,\left\|Y^{-1}\right\|\right\}
$$

where $\kappa(A)$ is the condition number of A.
Problem 3. Let A be a $m \times n$ matrix with $m \geq n$. Suppose that A has full column rank. Show that there is a unique $m \times n$ orthogonal matrix $Q\left(Q^{T} Q=I_{n}\right)$ and a unique $n \times n$ matrix R with positive diagonals $r_{i i}>0$ such that $A=Q R$.
Problem 4. Consider the following iteration for an $m \times n$ matrix A (with $m>n$) given some initial vector $x_{0} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
y_{i} & =\frac{A x_{i}}{\left\|A x_{i}\right\|_{2}} \\
x_{i+1}= & =\frac{A^{T} y_{i}}{\left\|A^{T} y_{i}\right\|_{2}}
\end{aligned}
$$

for $i=0,1, \cdots$. Under what conditions on the singular values of A and the initial vector x_{0} will this iteration converge, and what will x_{i} and y_{i} converge to? Provide a proof to your answers.

Problem 5. Assume that $f \in C^{3}[a, b]$ with $f^{\prime}(x)>0$ for all x. Let $r \in[a, b]$ be a root of f satisfying $f(r)=f^{\prime \prime}(r)=0$ and let $\left\{x_{n}\right\}$ be generated by Newton's method. If $x_{n} \in[a, b]$, prove that $\left|x_{n+1}-r\right| \leq \frac{M}{2 m}\left|x_{n}-r\right|^{3}$, where $M=\max _{x \in[a, b]}\left|f^{(3)}(x)\right|$ and $m=\min _{x \in[a, b]} f^{\prime}(x)$.
Problem 6. It can be verified that $g(x)=(2 x-1)\left(10 x^{2}-10 x+1\right)$ satisfies $\int_{0}^{1} x^{n} g(x) d x=0$ for $n=0,1,2$. Find numbers x_{0}, x_{1}, x_{2} and w_{0}, w_{1}, w_{2} satisfying

$$
\int_{0}^{1} p(x) d x=w_{0} p\left(x_{0}\right)+w_{1} p\left(x_{1}\right)+w_{2} p\left(x_{2}\right)
$$

for all polynomials p of degree at most 5 . Cite the theorems you use.
Problem 7. Let (p, q) be an inner product on the vector space V of all real polynomials of a single variable and suppose $\left(e_{1} p, q\right)=\left(p, e_{1} q\right)$ for all polynomials p and q in V, where e_{1} is the polynomial $e_{1}(x)=x$. Define inductively a sequence $\left\{p_{n}\right\}$ of polynomials in V by $p_{0}(x)=1$, $p_{1}(x)=x-a_{1}$ and

$$
p_{n}(x)=\left(x-a_{n}\right) p_{n-1}(x)-b_{n} p_{n-2}(x),
$$

where $a_{n}=\frac{\left(e_{1} p_{n-1}, p_{n-1}\right)}{\left(p_{n-1}, p_{n-1}\right)}$ for $n \geq 1, \quad b_{n}=\frac{\left(e_{1} p_{n-1}, p_{n-2}\right)}{\left(p_{n-2}, p_{n-2}\right)}$ for $n \geq 2$.
Show that $\left(p_{n}, p_{m}\right)=0$ when $n, m \geq 0$ and $m \neq n$.
Problem 8. Prove the following theorem using only elementary calculus: Let $f(x)$ be a function with continuous derivatives in $[a, b]$ up to and including the $n+1$ th derivative and let $p(x)$ be a polynomial of degree at most n with $p\left(x_{i}\right)=f\left(x_{i}\right)$ for $i=0,1, \ldots n$, where $a \leq x_{0} \leq x_{1} \cdots \leq$ $x_{n} \leq b$. Show that to each x in $[a, b]$ there corresponds a point ξ in (a, b) such that

$$
f(x)-p(x)=\frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n}\left(x-x_{i}\right) .
$$

