Preliminary Examination in Numerical Analysis

Jan. 10, 2020

Instructions:

- 1. The examination is for 3 hours.
- 2. The examination consists of eight equally-weighted problems.
- 3. Attempt all problems.

Problem 1. If $A = [a_{ij}] \in \mathbb{R}^{m \times n}$, show that $||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|$.

Problem 2. Let A, X and Y be $n \times n$ matrices such that A is invertible, $||X - A|| \le \epsilon ||A||$ and $||Y - A|| \le \epsilon ||A||$ for some $\epsilon > 0$. If $\epsilon \kappa(A) < 1$, prove that X and Y are invertible and

$$||X^{-1} - Y^{-1}|| \le \frac{2\epsilon\kappa(A)}{1 - \epsilon\kappa(A)} \min\{||X^{-1}||, ||Y^{-1}||\},\$$

where $\kappa(A)$ is the condition number of A.

Problem 3. Let A be a $m \times n$ matrix with $m \ge n$. Suppose that A has full column rank. Show that there is a unique $m \times n$ orthogonal matrix Q ($Q^T Q = I_n$) and a unique $n \times n$ matrix R with positive diagonals $r_{ii} > 0$ such that A = QR.

Problem 4. Consider the following iteration for an $m \times n$ matrix A (with m > n) given some initial vector $x_0 \in \mathbb{R}^n$,

$$y_{i} = \frac{Ax_{i}}{\|Ax_{i}\|_{2}}$$
$$x_{i+1} = \frac{A^{T}y_{i}}{\|A^{T}y_{i}\|_{2}}$$

for $i = 0, 1, \dots$. Under what conditions on the singular values of A and the initial vector x_0 will this iteration converge, and what will x_i and y_i converge to? Provide a proof to your answers.

Problem 5. Assume that $f \in C^3[a,b]$ with f'(x) > 0 for all x. Let $r \in [a,b]$ be a root of f satisfying f(r) = f''(r) = 0 and let $\{x_n\}$ be generated by Newton's method. If $x_n \in [a,b]$, prove that $|x_{n+1} - r| \leq \frac{M}{2m} |x_n - r|^3$, where $M = \max_{x \in [a,b]} |f^{(3)}(x)|$ and $m = \min_{x \in [a,b]} f'(x)$.

Problem 6. It can be verified that $g(x) = (2x - 1)(10x^2 - 10x + 1)$ satisfies $\int_0^1 x^n g(x) dx = 0$ for n = 0, 1, 2. Find numbers x_0, x_1, x_2 and w_0, w_1, w_2 satisfying

$$\int_0^1 p(x) \, dx = w_0 p(x_0) + w_1 p(x_1) + w_2 p(x_2)$$

for all polynomials p of degree at most 5. Cite the theorems you use.

Problem 7. Let (p,q) be an inner product on the vector space V of all real polynomials of a single variable and suppose $(e_1p,q) = (p,e_1q)$ for all polynomials p and q in V, where e_1 is the polynomial $e_1(x) = x$. Define inductively a sequence $\{p_n\}$ of polynomials in V by $p_0(x) = 1$, $p_1(x) = x - a_1$ and

$$p_n(x) = (x - a_n)p_{n-1}(x) - b_n p_{n-2}(x),$$

where
$$a_n = \frac{(e_1 p_{n-1}, p_{n-1})}{(p_{n-1}, p_{n-1})}$$
 for $n \ge 1$, $b_n = \frac{(e_1 p_{n-1}, p_{n-2})}{(p_{n-2}, p_{n-2})}$ for $n \ge 2$.

Show that $(p_n, p_m) = 0$ when $n, m \ge 0$ and $m \ne n$.

Problem 8. Prove the following theorem using only elementary calculus: Let f(x) be a function with continuous derivatives in [a, b] up to and including the n + 1th derivative and let p(x) be a polynomial of degree at most n with $p(x_i) = f(x_i)$ for i = 0, 1, ..., n, where $a \le x_0 \le x_1 \cdots \le x_n \le b$. Show that to each x in [a, b] there corresponds a point ξ in (a, b) such that

$$f(x) - p(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n} (x - x_i).$$