Preliminary Examination in Numerical Analysis

Jan. 19, 2021

Instructions:

1. The examination is for 3 hours.
2. The examination consists of eight equally-weighted problems.
3. Attempt all problems.

Problem 1. Suppose that $A \in \mathbb{C}^{n \times n}$ and $S=\sum_{k=0}^{\infty} A^{k}$. Show the matrix S is invertible if and only if the spectral radius of A is strictly smaller than one. Specify the inverse matrix of S when it exists. Hint: Show that $\lim _{n \rightarrow \infty} A^{n}=0$. Use this limit and the partial sum $S_{n}=I+A+\ldots+A^{n}$ to obtain useful relationships between S and A.
Problem 2. Let A be a Hermitian positive definite matrix with the form $A=\left[\begin{array}{cc}a_{11} & \omega^{*} \\ \omega & M\end{array}\right]$. Assume the first step of the Cholesky factorization yields

$$
A=\left[\begin{array}{cc}
\sqrt{a_{11}} & 0 \\
\omega / a_{11} & I
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & M-\omega \omega^{*} / a_{11}
\end{array}\right]\left[\begin{array}{cc}
\sqrt{a_{11}} & \omega^{*} / \sqrt{a_{11}} \\
0 & I
\end{array}\right] .
$$

Show that both M and $M-\omega \omega^{*} / a_{11}$ are Hermitian positive definite matrices.
Problem 3. Let $\left\{\mathbf{x}_{1}, \ldots \mathbf{x}_{n}\right\}$ be an orthonormal set of eigenvectors of an $n \times n$ matrix $A+\lambda I$ with associated eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$. Express the solution of the equation $A \mathbf{x}=\mathbf{b}$ in terms of the \mathbf{x}_{i} 's and λ_{i} 's if $\lambda_{i}-\lambda \neq 0$ for all $1 \leq i \leq n$.
Problem 4. Let $A \in \mathbb{R}^{m \times n}$ with $m \geq n$ have rank n, and $\mathbf{b} \in \mathbb{R}^{m}$.
(a) Show that the function $f(\mathbf{x})=\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{2}^{2}$ has a unique minimizer for any $\lambda>0$.

Hint: Derive the normal equation.
(b) Use the SVD of A to find the solution to the problem in Part (a). If $\lambda \rightarrow \infty$, what happens to the solution?

Problem 5. Let $A \in \mathbb{R}^{n \times n}$ and $\mathbf{x} \in \mathbb{R}^{n}$. Show that, barring overflow and underflow,

$$
\mathrm{fl}\left(\mathbf{x}^{T}(A \mathbf{x})\right)=\mathbf{x}^{T} A \mathbf{x}+f \text { with }|f| \leq|\mathbf{x}|^{T}|A||\mathbf{x}| \cdot 2 n \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
$$

where $\mathrm{fl}(e)$ denotes the computation results of an expression e in a floating point arithmetic, ϵ is the machine epsilon, and $|\cdot|$ denotes entrywise absolute value.

Problem 6. Consider the data $f(0)=0, f(1)=1, f(2)=0, f(3)=1$, and $f(4)=0$. Find both Lagrange's and Newton's interpolating polynomials that interpolate the function values of f.

Problem 7.
(a) Find constants $c_{0}, c_{1}, c_{2}, c_{3}$ such that the quadrature formula

$$
\int_{0}^{1} f(x) d x=c_{0} f(0)+c_{1} f(1)+c_{2} f^{\prime}(0)+c_{3} f^{\prime}(1)
$$

has the highest possible degree of precision (i.e., the highest degree of polynomials for which this formula is exact). What is the highest degree of precision?
(b) Extend the quadrature formula in Part (a) to $\int_{a}^{b} f(t) d t$.

Problem 8. Consider the initial value problem

$$
y^{\prime}(t)=\cos (y(t)), \quad y(0)=y_{0} .
$$

(a) Describe the implicit Euler's method to solve the problem. Find the region of absolute stability.
(b) Determine the order of truncation error and the corresponding principal error function.

