Preliminary Examination in Numerical Analysis

Jan. 19, 2021

Instructions:

- 1. The examination is for 3 hours.
- 2. The examination consists of eight equally-weighted problems.
- 3. Attempt all problems.

Problem 1. Suppose that $A \in \mathbb{C}^{n \times n}$ and $S = \sum_{k=0}^{\infty} A^k$. Show the matrix S is invertible if and only if the spectral radius of A is strictly smaller than one. Specify the inverse matrix of S when it exists. **Hint:** Show that $\lim_{n \to \infty} A^n = 0$. Use this limit and the partial sum $S_n = I + A + \ldots + A^n$ to obtain useful relationships between S and A.

Problem 2. Let A be a Hermitian positive definite matrix with the form $A = \begin{bmatrix} a_{11} & \omega^* \\ \omega & M \end{bmatrix}$. Assume the first step of the Cholesky factorization yields

$$A = \begin{bmatrix} \sqrt{a_{11}} & 0\\ \omega/a_{11} & I \end{bmatrix} \begin{bmatrix} 1 & 0\\ 0 & M - \omega\omega^*/a_{11} \end{bmatrix} \begin{bmatrix} \sqrt{a_{11}} & \omega^*/\sqrt{a_{11}}\\ 0 & I \end{bmatrix}$$

Show that both M and $M - \omega \omega^* / a_{11}$ are Hermitian positive definite matrices.

Problem 3. Let $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$ be an orthonormal set of eigenvectors of an $n \times n$ matrix $A + \lambda I$ with associated eigenvalues $\{\lambda_1, \ldots, \lambda_n\}$. Express the solution of the equation $A\mathbf{x} = \mathbf{b}$ in terms of the \mathbf{x}_i 's and λ_i 's if $\lambda_i - \lambda \neq 0$ for all $1 \leq i \leq n$.

Problem 4. Let $A \in \mathbb{R}^{m \times n}$ with $m \ge n$ have rank n, and $\mathbf{b} \in \mathbb{R}^m$.

- (a) Show that the function $f(\mathbf{x}) = ||A\mathbf{x} \mathbf{b}||_2^2 + \lambda ||\mathbf{x}||_2^2$ has a *unique* minimizer for any $\lambda > 0$. **Hint:** Derive the normal equation.
- (b) Use the SVD of A to find the solution to the problem in Part (a). If $\lambda \to \infty$, what happens to the solution?

Problem 5. Let $A \in \mathbb{R}^{n \times n}$ and $\mathbf{x} \in \mathbb{R}^n$. Show that, barring overflow and underflow,

$$fl(\mathbf{x}^T(A\mathbf{x})) = \mathbf{x}^T A \mathbf{x} + f \text{ with } |f| \le |\mathbf{x}|^T |A| |\mathbf{x}| \cdot 2n\epsilon + \mathcal{O}(\epsilon^2),$$

where fl(e) denotes the computation results of an expression e in a floating point arithmetic, ϵ is the machine epsilon, and $|\cdot|$ denotes entrywise absolute value.

Problem 6. Consider the data f(0) = 0, f(1) = 1, f(2) = 0, f(3) = 1, and f(4) = 0. Find both Lagrange's and Newton's interpolating polynomials that interpolate the function values of f.

Problem 7.

(a) Find constants c_0, c_1, c_2, c_3 such that the quadrature formula

$$\int_0^1 f(x)dx = c_0 f(0) + c_1 f(1) + c_2 f'(0) + c_3 f'(1)$$

has the highest possible *degree of precision* (i.e., the highest degree of polynomials for which this formula is exact). What is the highest degree of precision?

(b) Extend the quadrature formula in Part (a) to $\int_a^b f(t)dt$.

Problem 8. Consider the initial value problem

$$y'(t) = \cos(y(t)), \quad y(0) = y_0.$$

- (a) Describe the implicit Euler's method to solve the problem. Find the region of absolute stability.
- (b) Determine the order of truncation error and the corresponding principal error function.