Preliminary Examination in Numerical Analysis

Jan 4, 2022

Instructions:

1. The examination is for 3 hours.
2. The examination consists of eight equally-weighted problems.
3. Attempt all problems.

Problem 1. Let $A \in \mathbb{R}^{n \times n}$ be strictly column diagonally dominant, i.e., $\sum_{i \neq j}\left|a_{i j}\right|<\left|a_{j j}\right|$ for $j=1, \ldots, n$. Show that no row interchanges are needed when applying Gaussian elimination with partial pivoting to A.

Problem 2. Let $A \in \mathbb{R}^{m \times n}(m<n)$ be full rank. Show that the solution of the problem $\min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{b}\|_{2}$ is an $(n-m)$-dimensional set, and then derive its unique minimum norm solution using modified normal equations and QR decomposition.

Problem 3. Consider a real symmetric matrix $H=\left[\begin{array}{cc}A & B \\ B^{T} & \mathbf{0}\end{array}\right]$ where $B \in \mathbb{R}^{m \times n}$ has full rank with $m \geq n$. Denote the eigenvalues of a symmetric matrix X by $\lambda_{1}(X) \geq \cdots \geq \lambda_{n}(X)$.
(a) If $A=\mathbf{0}$ and $m=n$, then use the singular values of B to express the condition number of H.
(b) Show that $\lambda_{j}(H) \geq \lambda_{j}(A)$ for $j=1, \ldots, m$. (Hint: Use Courant-Fischer minimax theorem.)

Problem 4. Consider a symmetric matrix $A \in \mathbb{R}^{n \times n}$.
(a) Show the shifted QR iteration algorithm preserves the upper Hessenberg form.
(b) Design a two-phase algorithm using (a) to find the eigenvalues of A and specify how to choose shifts to achieve cubic convergence.

Problem 5. Let $f(x)=\frac{1}{1+9 x^{2}}$.
(a) Use Newton's interpolation formula to obtain the interpolating polynomial $p(x)$ for $f(x)$ using divided differences at the points $x_{0}=-1, x_{1}=0$, and $x_{2}=1$.
(b) Find an expression for the error bound of $p(x)$ in (a). That is, write out an upper bound for $|f(x)-p(x)|$.

Problem 6. For each of the following cases:
(a) $f(x)=\sqrt{x}$,
(b) $f(x)=x^{2}$,
(c) $f(x)=x e^{x}$,
consider the Newton's method for solving the equation $f(x)=0$ and describe the convergence behavior. That is, specify whether it diverges, converges linearly or quadratically.

Problem 7. Describe how to determine the nodes t_{k} and weights w_{k} for the Gauss quadrature rule

$$
\int_{0}^{1} f(t) \omega(t) d t \approx \sum_{k=1}^{n} f\left(t_{k}\right) w_{k}
$$

where $\omega(t)>0$ is a given weight function. You can assume $\int_{0}^{1} p(t) q(t) \omega(t) d t$ can be evaluated exactly for all polynomials $p(t)$ and $q(t)$, and the roots of a polynomial can also be computed.

Problem 8. Consider the following two-stage numerical method

$$
\boldsymbol{y}_{\mathrm{next}}=\boldsymbol{y}+h \boldsymbol{f}\left(x+\frac{1}{2} h, \boldsymbol{y}+\frac{1}{2} h \boldsymbol{f}(x, \boldsymbol{y})\right)
$$

for solving the initial value problem $\boldsymbol{y}^{\prime}(x)=\boldsymbol{f}(x, \boldsymbol{y})$ and $\boldsymbol{y}(0)=\boldsymbol{y}_{0}$. Find out the order of the truncation error for this method and determine if the method is A-stable. Explain why.

