Preliminary Examination in Numerical Analysis

January 4, 2023

Instructions:

1. The examination is for 3 hours.
2. The examination consists of eight equally-weighted problems.
3. Attempt all problems.

Problem 1. Let A and Q be two $n \times n$ real matrices and assume that Q is orthogonal. Prove that

$$
f l(Q A)=Q(A+E), \quad \text { where } \quad\|E\|_{2} \leq n^{5 / 2} \epsilon\|A\|_{2}+\mathcal{O}\left(\epsilon^{2}\right)
$$

where ϵ is the machine precision. (Hint: You may use without proof that $\mathrm{fl}\left(\sum_{i=1}^{n} x_{i} y_{i}\right)=$ $\sum_{i=1}^{n} x_{i} y_{i}\left(1+\delta_{i}\right)$ with $\left|\delta_{i}\right| \leq n \epsilon+\mathcal{O}\left(\epsilon^{2}\right)$ and $\frac{1}{\sqrt{n}}\|A\|_{1} \leq\|A\|_{2} \leq \sqrt{n}\|A\|_{1}$.)

Problem 2. For any $n \times n$ real matrix $A, A_{S}=\left(A+A^{T}\right) / 2$ is symmetric and is called the symmetric part of A. Prove that if A_{S} is positive definite, then A is nonsingular. Further prove that A has an $L U$ factorization without using pivoting.
Problem 3. Let A, B and C be real matrices with dimensions such that the product $A^{T} C B^{T}$ is well defined. Let \mathcal{X} be the set of all matrices minimizing $\|A X B-C\|_{F}$. Find the solution of the problem $\min _{X \in \mathcal{X}}\|X\|_{F}$. (Hint: Use the SVDs of A and B.)

Problem 4. Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of a symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$. Prove that

$$
\lambda_{n}=\min _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}
$$

where the minimum is taken over $\mathbf{x} \in \mathbb{R}^{n}$.
Problem 5. Suppose the equation $f(x)=0$ has a root α with multiplicity $m \geq 2$, and Newton's method converges to α. Show that this convergence is only linear. How would you modify the method to obtain quadratic convergence?

Problem 6. Let $x_{0}, x_{1}, \ldots, x_{n}$ be $n+1$ distinct numbers in [a,b].
a. Construct polynomials $L_{i}(x)$ of degree $n, i=0,1, \ldots, n$, such that

$$
L_{i}\left(x_{k}\right)=\delta_{i k}= \begin{cases}1, & i=k, \\ 0, & i \neq k,\end{cases}
$$

for $k=0,1, \ldots, n$.
b. Construct polynomials $H_{i}(x)$ of degree $2 n, i=0,1, \ldots, n$, such that $H_{i}\left(x_{k}\right)=\delta_{i k}, k=$ $0,1, \ldots, n$, and $H_{i}^{\prime}\left(x_{j}\right)=0, j=0,1, \ldots, n, j \neq i$.
c. Construct polynomials $K_{i}(x)$ of degree $2 n, i=0,1, \ldots, n$, such that $K_{i}\left(x_{k}\right)=\delta_{i k}, k=$ $0,1, \ldots, n$, and $K_{i}^{\prime}\left(x_{j}\right)=0, j=1, \ldots, n$.

Problem 7. Prove that if $s(x)$ is a cubic spline that interpolates the function $g(x) \in C^{2}[a, b]$ at the knots $a=x_{1}<x_{2}<\cdots<x_{n}=b$ and satisfies the clamped conditions, i.e., $s^{\prime}(a)=g^{\prime}(a)$ and $s^{\prime}(b)=g^{\prime}(b)$, then

$$
\int_{a}^{b}\left[g^{\prime \prime}(x)\right]^{2} d x \geq \int_{a}^{b}\left[s^{\prime \prime}(x)\right]^{2} d x
$$

Problem 8. Consider the initial value problem $y^{\prime}(t)=f(t, y), a \leq t \leq b$, and $y(a)=\alpha$.
a. Let $a=t_{0}<t_{1}<t_{2}<\cdots<t_{N}=b$ be a uniform grid on $[a, b]$ with grid size $h=(b-a) / N$. Show that

$$
y^{\prime}\left(t_{i}\right)=\frac{-y\left(t_{i+2}\right)+4 y\left(t_{i+1}\right)-3 y\left(t_{i}\right)}{2 h}+\frac{h^{2}}{3} y^{(3)}\left(\xi_{i}\right),
$$

for some ξ_{i} in $\left(t_{i}, t_{i+2}\right)$, for $i=0, \ldots, N-2$.
b. Analyze the consistency, stability, and convergence of the following multi-step method

$$
y_{i+2}=4 y_{i+1}-3 y_{i}-2 h f\left(t_{i}, y_{i}\right)
$$

for the numerical solution of $y^{\prime}(t)=f(t, y)$ with $y_{0}=y\left(t_{0}\right)$ and $y_{1}=y\left(t_{1}\right)$.

