Preliminary Examination in Numerical Analysis

January 4, 2023

Instructions:

- 1. The examination is for 3 hours.
- 2. The examination consists of eight equally-weighted problems.
- 3. Attempt all problems.

Problem 1. Let A and Q be two $n \times n$ real matrices and assume that Q is orthogonal. Prove that

$$fl(QA) = Q(A + E), \quad \text{where} \quad \|E\|_2 \le n^{5/2} \epsilon \|A\|_2 + \mathcal{O}(\epsilon^2)$$

where ϵ is the machine precision. (Hint: You may use without proof that $fl\left(\sum_{i=1}^{n} x_i y_i\right) = \sum_{i=1}^{n} x_i y_i (1+\delta_i)$ with $|\delta_i| \le n\epsilon + \mathcal{O}(\epsilon^2)$ and $\frac{1}{\sqrt{n}} ||A||_1 \le ||A||_2 \le \sqrt{n} ||A||_1$.)

Problem 2. For any $n \times n$ real matrix A, $A_S = (A + A^T)/2$ is symmetric and is called the symmetric part of A. Prove that if A_S is positive definite, then A is nonsingular. Further prove that A has an LU factorization without using pivoting.

Problem 3. Let A, B and C be real matrices with dimensions such that the product $A^T C B^T$ is well defined. Let \mathcal{X} be the set of all matrices minimizing $||AXB - C||_F$. Find the solution of the problem $\min_{X \in \mathcal{X}} ||X||_F$. (*Hint:* Use the SVDs of A and B.)

Problem 4. Let $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ be the eigenvalues of a symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$. Prove that

$$\lambda_n = \min_{\mathbf{x} \neq 0} \frac{\|A\mathbf{x}\|_2}{\|\mathbf{x}\|_2}$$

where the minimum is taken over $\mathbf{x} \in \mathbb{R}^n$.

Problem 5. Suppose the equation f(x) = 0 has a root α with multiplicity $m \ge 2$, and Newton's method converges to α . Show that this convergence is only linear. How would you modify the method to obtain quadratic convergence?

Problem 6. Let x_0, x_1, \ldots, x_n be n + 1 distinct numbers in [a,b].

a. Construct polynomials $L_i(x)$ of degree n, i = 0, 1, ..., n, such that

$$L_i(x_k) = \delta_{ik} = \begin{cases} 1, & i = k, \\ 0, & i \neq k, \end{cases}$$

for k = 0, 1, ..., n.

- b. Construct polynomials $H_i(x)$ of degree 2n, i = 0, 1, ..., n, such that $H_i(x_k) = \delta_{ik}$, k = 0, 1, ..., n, and $H'_i(x_j) = 0$, j = 0, 1, ..., n, $j \neq i$.
- c. Construct polynomials $K_i(x)$ of degree 2n, i = 0, 1, ..., n, such that $K_i(x_k) = \delta_{ik}$, k = 0, 1, ..., n, and $K'_i(x_i) = 0, j = 1, ..., n$.

Problem 7. Prove that if s(x) is a cubic spline that interpolates the function $g(x) \in C^2[a, b]$ at the knots $a = x_1 < x_2 < \cdots < x_n = b$ and satisfies the clamped conditions, i.e., s'(a) = g'(a) and s'(b) = g'(b), then

$$\int_{a}^{b} \left[g''(x)\right]^{2} dx \ge \int_{a}^{b} \left[s''(x)\right]^{2} dx$$

Problem 8. Consider the initial value problem $y'(t) = f(t, y), a \le t \le b$, and $y(a) = \alpha$.

a. Let $a = t_0 < t_1 < t_2 < \cdots < t_N = b$ be a uniform grid on [a, b] with grid size h = (b - a)/N. Show that

$$y'(t_i) = \frac{-y(t_{i+2}) + 4y(t_{i+1}) - 3y(t_i)}{2h} + \frac{h^2}{3}y^{(3)}(\xi_i),$$

for some ξ_i in (t_i, t_{i+2}) , for i = 0, ..., N - 2.

b. Analyze the consistency, stability, and convergence of the following multi-step method

$$y_{i+2} = 4y_{i+1} - 3y_i - 2hf(t_i, y_i).$$

for the numerical solution of y'(t) = f(t, y) with $y_0 = y(t_0)$ and $y_1 = y(t_1)$.