Preliminary Examination in Numerical Analysis

January 5, 2024

Instructions:

- 1. The examination is for 3 hours.
- 2. The examination consists of eight equally-weighted problems.
- 3. Attempt all problems.

Problem 1. Consider computing Ax - b in a floating point arithmetic where $A = [a_{ij}] \in \mathbb{R}^{n \times n}$, $x \in \mathbb{R}^n$, and $b = [b_i] \in \mathbb{R}^n$. Prove that

$$fl(Ax - b) = (A + \Delta)x - \hat{b}$$

for some $\Delta = [\delta_{ij}] \in \mathbb{R}^{n \times n}$ and $\hat{b} = [\hat{b}_i] \in \mathbb{R}^n$ where $|\delta_{ij}| \leq (n+1)\epsilon |a_{ij}| + \mathcal{O}(\epsilon^2)$, $|\hat{b}_i - b_i| \leq \epsilon |b_i|$, and ϵ is the machine roundoff unit (sometimes also called machine epsilon). (You may use $fl(\sum_{i=1}^d x_i y_i) = \sum_{i=1}^d x_i y_i(1+\delta_i)$, with $|\delta_i| \leq d\epsilon + \mathcal{O}(\epsilon^2)$.)

Problem 2. Let A be an $n \times n$ invertible real matrix and U and V be $n \times k$ (with $n \ge k$) real matrices. If $I - V^T A^{-1}U$ is invertible, prove that $B = \begin{pmatrix} A & U \\ V^T & I \end{pmatrix}$ is invertible and find its inverse B^{-1} in terms of A^{-1} and $(I - V^T A^{-1}U)^{-1}$.

Problem 3. There are three methods for solving the least squares problem $\min_{x \in \mathbb{R}^n} ||Ax - b||_2$, where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $m \ge n$. Describe *one* of these methods and discuss how it compares with the other two methods in terms of stability and computational efficiency.

Problem 4. Let $A \in \mathbb{R}^{n \times n}$ and $H = \begin{bmatrix} I_n & A^T \\ A & I_n \end{bmatrix}$ be nonsingular where I_n is the *n*-by-*n* identity matrix. Find the condition number $\kappa_2(H)$ in terms of the singular values of A.

Problem 5. Suppose $f \in C^{5}[-1, 2]$ satisfies $|f^{(k)}(x)| \leq M_{k}$ for $k = 0, 1, ..., 5, x \in [-1, 2]$, and

$$f(-1) = 3$$
, $f'(-1) = 1$ $f(0) = 1$, $f(2) = 5$, $f'(2) = 3$

(a) Estimate f(1) using Lagrange interpolation and express its maximum possible error.

(b) Estimate f(1) using Hermite interpolation.

Problem 6. Assume $f \in C^2[0, 1]$. Show that

$$\int_0^1 f(x) dx = f(0.5) + \frac{1}{24} f''(\xi), \quad 0 < \xi < 1.$$

Problem 7. Prove that the following Runge-Kutta method

$$K_{1} = hf(t, y)$$

$$K_{2} = hf\left(t + \frac{1}{2}h, y + \frac{1}{2}K_{1}\right)$$

$$K_{3} = hf\left(t + \frac{3}{4}h, y + \frac{3}{4}K_{2}\right)$$

$$y(t + h) = y(t) + \frac{1}{9}\left(2K_{1} + 3K_{2} + 4K_{3}\right)$$

for the initial value problem y' = f(t, y), where f(t, y) = y + t and $y(0) = y_0$, has the local truncation error of $O(h^4)$.

Problem 8. Find all positive real values of α for which the linear two-step method

$$y_{n+2} = \alpha y_n + \frac{h}{3} \left[f\left(t_{n+2}, y_{n+2}\right) + 4f\left(t_{n+1}, y_{n+1}\right) + f\left(t_n, y_n\right) \right]$$

is zero-stable when solving the initial value problem y'(t) = f(t, y), $y(0) = y_0$, and achieves the highest possible order of accuracy.