Preliminary Examination in Numerical Analysis

January 5, 2024

Instructions:

1. The examination is for 3 hours.
2. The examination consists of eight equally-weighted problems.
3. Attempt all problems.

Problem 1. Consider computing $A x-b$ in a floating point arithmetic where $A=\left[a_{i j}\right] \in \mathbb{R}^{n \times n}$, $x \in \mathbb{R}^{n}$, and $b=\left[b_{i}\right] \in \mathbb{R}^{n}$. Prove that

$$
f l(A x-b)=(A+\Delta) x-\hat{b}
$$

for some $\Delta=\left[\delta_{i j}\right] \in \mathbb{R}^{n \times n}$ and $\hat{b}=\left[\hat{b}_{i}\right] \in \mathbb{R}^{n}$ where $\left|\delta_{i j}\right| \leq(n+1) \epsilon\left|a_{i j}\right|+\mathcal{O}\left(\epsilon^{2}\right),\left|\hat{b}_{i}-b_{i}\right| \leq \epsilon\left|b_{i}\right|$, and ϵ is the machine roundoff unit (sometimes also called machine epsilon).
(You may use $f l\left(\sum_{i=1}^{d} x_{i} y_{i}\right)=\sum_{i=1}^{d} x_{i} y_{i}\left(1+\delta_{i}\right)$, with $\left|\delta_{i}\right| \leq d \epsilon+\mathcal{O}\left(\epsilon^{2}\right)$.)
Problem 2. Let A be an $n \times n$ invertible real matrix and U and V be $n \times k$ (with $n \geq k$) real matrices. If $I-V^{T} A^{-1} U$ is invertible, prove that $B=\left(\begin{array}{cc}A & U \\ V^{T} & I\end{array}\right)$ is invertible and find its inverse B^{-1} in terms of A^{-1} and $\left(I-V^{T} A^{-1} U\right)^{-1}$.

Problem 3. There are three methods for solving the least squares problem $\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}$, where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $m \geq n$. Describe one of these methods and discuss how it compares with the other two methods in terms of stability and computational efficiency.
Problem 4. Let $A \in \mathbb{R}^{n \times n}$ and $H=\left[\begin{array}{cc}I_{n} & A^{T} \\ A & I_{n}\end{array}\right]$ be nonsingular where I_{n} is the n-by- n identity matrix. Find the condition number $\kappa_{2}(H)$ in terms of the singular values of A.

Problem 5. Suppose $f \in C^{5}[-1,2]$ satisfies $\left|f^{(k)}(x)\right| \leq M_{k}$ for $k=0,1, \ldots, 5, x \in[-1,2]$, and

$$
f(-1)=3, \quad f^{\prime}(-1)=1 \quad f(0)=1, \quad f(2)=5, \quad f^{\prime}(2)=3 .
$$

(a) Estimate $f(1)$ using Lagrange interpolation and express its maximum possible error.
(b) Estimate $f(1)$ using Hermite interpolation.

Problem 6. Assume $f \in C^{2}[0,1]$. Show that

$$
\int_{0}^{1} f(x) \mathrm{d} x=f(0.5)+\frac{1}{24} f^{\prime \prime}(\xi), \quad 0<\xi<1 .
$$

Problem 7. Prove that the following Runge-Kutta method

$$
\begin{aligned}
& K_{1}=h f(t, y) \\
& K_{2}=h f\left(t+\frac{1}{2} h, y+\frac{1}{2} K_{1}\right) \\
& K_{3}=h f\left(t+\frac{3}{4} h, y+\frac{3}{4} K_{2}\right) \\
& y(t+h)=y(t)+\frac{1}{9}\left(2 K_{1}+3 K_{2}+4 K_{3}\right)
\end{aligned}
$$

for the initial value problem $y^{\prime}=f(t, y)$, where $f(t, y)=y+t$ and $y(0)=y_{0}$, has the local truncation error of $O\left(h^{4}\right)$.

Problem 8. Find all positive real values of α for which the linear two-step method

$$
y_{n+2}=\alpha y_{n}+\frac{h}{3}\left[f\left(t_{n+2}, y_{n+2}\right)+4 f\left(t_{n+1}, y_{n+1}\right)+f\left(t_{n}, y_{n}\right)\right]
$$

is zero-stable when solving the initial value problem $y^{\prime}(t)=f(t, y), y(0)=y_{0}$, and achieves the highest possible order of accuracy.

