Preliminary Examination in Numerical Analysis

June 1, 2000

Instructions:

- Examination is 3 hours: 9am to noon
- Part I: Numerical Linear Algebra
- Part II: Numerical Differential Equations
- For problems with multiple parts, you may get full credit for a particular part using results of previous parts even though you fail to finish these previous parts
- For Part I: Do **Problem 1**, and one of **Problem 2** and **Problem 3**

Part I. Numerical Linear Algebra

Problem 1. Rank-revealing QR decomposition. R is $n \times n$ and upper triangular. $\sigma_{\min}(\cdot)$ denotes the smallest singular value. I is the $n \times n$ identity matrix whose jth column is e_j . P_{ij} is I with its ith and jth columns swapped, i.e.,

- 1. RP_{ij} is R with its *i*th and *j*th columns swapped.
- 2. Show that if $||Rx||_2 = \epsilon$ and $||x||_2 = 1$ then $\sigma_{\min}(R) \le \epsilon$.
- 3. It is reasonable to expect that R has a small diagonal entry if R is nearly singular. Nevertheless this is not true. Consider

$$R = \begin{pmatrix} 1 & -1 & -1 & \cdots & -1 \\ & 1 & -1 & \cdots & -1 \\ & & \ddots & \ddots & -1 \\ & & & \ddots & -1 \\ & & & & 1 \end{pmatrix}$$

which has no small diagonal entries, but $\sigma_{\min}(R) \leq 2^{-n+1}\sqrt{n}$. Prove this. Hint: calculate Rv where $v = (2^{n-1}, 2^{n-2}, \dots, 2, 1)^T$.

4. Let vector x, $||x||_2 = 1$ satisfy $||Rx||_2 = \epsilon$, and j_0 be the integer such that $||x||_{\infty} = |x_{j_0}|$.

- (a) Show that $|x_{j_0}| \ge n^{-1/2}$.
- (b) Present an algorithm to compute a QR decomposition of RP_{j_0n}

$$RP_{j_0n} = QR.$$

at the cost of $\mathcal{O}(n^2)$ flops.

(c) Show that the last entry \tilde{r}_{nn} of \tilde{R} satisfies $|\tilde{r}_{nn}| \leq \sqrt{n} \epsilon$, and thus \tilde{R} must have a small diagonal entry if ϵ is small.

Problem 2. Let A be $n \times m$ and n > m.

- 1. What is Gram-Schmidt process to orthogonalize the columns of A? Formulate the process into matrix factorization A = QR, and what is Q and what is R? Does Gram-Schmidt process always produce vectors orthogonal up to around machine epsilon?
- 2. Describe a way that always produce fully orthogonal vectors from the columns of A? "Fully orthogonal" means orthogonal up to around machine epsilon.
- 3. Compare the speed of Gram-Schmidt process and the method you just described.

Problem 3. Let $A = D + \rho u u^T$, where $D = \text{diag}(d_1, d_2, \dots, d_n)$ and $u = (u_1, u_2, \dots, u_n)^T$. All numbers are real.

- 1. Show that if $u_i = 0$, then d_i is an eigenvalue of A and the corresponding eigenvector is e_i , the *i*th column of the identity matrix.
- 2. Show that if $d_i = d_{i+1}$, then d_i is an eigenvalue of A. Derive an expression for the corresponding eigenvector.
- 3. Assume that all $u_i \neq 0$ and that $d_1 < d_2 < \cdots < d_n$ and $\rho > 0$.
 - (a) Show that the eigenvalues of A are the roots of

$$1 + \rho \sum_{j=1}^{n} \frac{u_i^2}{d_j - \lambda} = 0.$$

- (b) Show that this equation has n roots and find n open intervals each of which contains exactly one root.
- (c) Show that if λ is a root then the corresponding eigenvector is parallel to $(D \lambda I)^{-1}u$.

Part II. Numerical Differential Equations

Problem 4. This problem is concerned with *stability* and *boundedness* analysis for an explicit scheme for the following convection-diffusion problem

$$u_t + au_x - \varepsilon u_{xx} = 0, \tag{1}$$

where a and ε are convection and diffusion coefficients, respectively, and an initial data $u(x,0) = u_0(x) \ge 0$ is assumed.

- (a) Formulate the forward-time central-space finite difference scheme for (1), with a uniform space step h and time step k.
- (b) Prove that the scheme is unconditionally unstable when $\varepsilon = 0$. (You may utilize the von Neumann analysis.)
- (c) Find the stability condition when a = 0.
- (d) Given a and ε , find conditions for the numerical solution to be nonnegative.

Problem 5. Let $\Omega = (0,1)^2$ and its boundary $\Gamma = \partial \Omega$. Consider the boundary value problem: find $u \in H_0^1(\Omega)$ such that

(i)
$$-\Delta u = f(x, y), \quad (x, y) \in \Omega,$$

(ii) $u = 0, \quad (x, y) \in \Gamma,$
(2)

where Δ is the Laplace operator and f is the source function.

- (a) Derive the weak form of (2). Sketch an argument which shows that (2) and its weak form have the same solutions, provided that u is sufficiently smooth.
- (b) Let \mathcal{T}_h be a uniform triangulation of Ω , where h = 1/(N+1) for some positive integer N, V^h the space of piecewise linear functions defined on \mathcal{T}_h , and $u^h \in V^h$ the Galerkin approximation of u. Let $\|\cdot\|$ denote the $L^2(\Omega)$ -norm. Then, one can see

$$\|\nabla(u-u^h)\| \le \|\nabla(u-v)\|, \text{ for any } v \in V^h.$$
(3)

Prove (3) and describe, in detail, its implications in error analysis for the finite element solution. Problem 6. Consider the initial-boundary value problem

$$u_{t} - u_{xx} - u_{yy} = f(x, y, t), \quad (x, y, t) \in \Omega \times J, u(x, y, t) = 0, \qquad (x, y, t) \in \Gamma \times J, u(x, y, 0) = u_{0}(x, y), \qquad (x, y) \in \Omega,$$
(4)

where $\Omega = (0, 1)^2$, $\Gamma = \partial \Omega$, and J = (0, T] for some T > 0.

- (a) Formulate the Crank-Nicolson central finite difference scheme.
- (b) Indicate the accuracy order of the scheme.
- (c) Formulate the alternating direction implicit (ADI) method by perturbing the formulation obtained in (a); discuss its efficiency and pitfalls in accuracy.