Preliminary Examination in Numerical Analysis

June 1, 2000

Instructions:

- Examination is 3 hours: 9am to noon
- Part I: Numerical Linear Algebra
- Part II: Numerical Differential Equations
- For problems with multiple parts, you may get full credit for a particular part using results of previous parts even though you fail to finish these previous parts
- For Part I: Do Problem 1, and one of Problem 2 and Problem 3

Part I. Numerical Linear Algebra

Problem 1. Rank-revealing QR decomposition. R is $n \times n$ and upper triangular. $\sigma_{\text {min }}(\cdot)$ denotes the smallest singular value. I is the $n \times n$ identity matrix whose j th column is $e_{j} . P_{i j}$ is I with its i th and j th columns swapped, i.e.,

1. $R P_{i j}$ is R with its i th and j th columns swapped.
2. Show that if $\|R x\|_{2}=\epsilon$ and $\|x\|_{2}=1$ then $\sigma_{\text {min }}(R) \leq \epsilon$.
3. It is reasonable to expect that R has a small diagonal entry if R is nearly singular. Nevertheless this is not true. Consider

$$
R=\left(\begin{array}{rrrrr}
1 & -1 & -1 & \cdots & -1 \\
& 1 & -1 & \cdots & -1 \\
& & \ddots & \ddots & -1 \\
& & & \ddots & -1 \\
& & & & 1
\end{array}\right),
$$

which has no small diagonal entries, but $\sigma_{\min }(R) \leq 2^{-n+1} \sqrt{n}$. Prove this.
Hint: calculate $R v$ where $v=\left(2^{n-1}, 2^{n-2}, \ldots, 2,1\right)^{T}$.
4. Let vector $x,\|x\|_{2}=1$ satisfy $\|R x\|_{2}=\epsilon$, and j_{0} be the integer such that $\|x\|_{\infty}=\left|x_{j_{0}}\right|$.
(a) Show that $\left|x_{j_{0}}\right| \geq n^{-1 / 2}$.
(b) Present an algorithm to compute a QR decomposition of $R P_{j_{0} n}$

$$
R P_{j_{0} n}=\widetilde{Q} \widetilde{R}
$$

at the cost of $\mathcal{O}\left(n^{2}\right)$ flops.
(c) Show that the last entry $\widetilde{r}_{n n}$ of \widetilde{R} satisfies $\left|\widetilde{r}_{n n}\right| \leq \sqrt{n} \epsilon$, and thus \widetilde{R} must have a small diagonal entry if ϵ is small.

Problem 2. Let A be $n \times m$ and $n>m$.

1. What is Gram-Schmidt process to orthogonalize the columns of A ? Formulate the process into matrix factorization $A=Q R$, and what is Q and what is R ? Does Gram-Schmidt process always produce vectors orthogonal up to around machine epsilon?
2. Describe a way that always produce fully orthogonal vectors from the columns of A ? "Fully orthogonal" means orthogonal up to around machine epsilon.
3. Compare the speed of Gram-Schmidt process and the method you just described.

Problem 3. Let $A=D+\rho u u^{T}$, where $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ and $u=$ $\left(u_{1}, u_{2}, \ldots, u_{n}\right)^{T}$. All numbers are real.

1. Show that if $u_{i}=0$, then d_{i} is an eigenvalue of A and the corresponding eigenvector is e_{i}, the i th column of the identity matrix.
2. Show that if $d_{i}=d_{i+1}$, then d_{i} is an eigenvalue of A. Derive an expression for the corresponding eigenvector.
3. Assume that all $u_{i} \neq 0$ and that $d_{1}<d_{2}<\cdots<d_{n}$ and $\rho>0$.
(a) Show that the eigenvalues of A are the roots of

$$
1+\rho \sum_{j=1}^{n} \frac{u_{i}^{2}}{d_{j}-\lambda}=0 .
$$

(b) Show that this equation has n roots and find n open intervals each of which contains exactly one root.
(c) Show that if λ is a root then the corresponding eigenvector is parallel to $(D-\lambda I)^{-1} u$.

Part II. Numerical Differential Equations

Problem 4. This problem is concerned with stability and boundedness analysis for an explicit scheme for the following convection-diffusion problem

$$
\begin{equation*}
u_{t}+a u_{x}-\varepsilon u_{x x}=0, \tag{1}
\end{equation*}
$$

where a and ε are convection and diffusion coefficients, respectively, and an initial data $u(x, 0)=u_{0}(x) \geq 0$ is assumed.
(a) Formulate the forward-time central-space finite difference scheme for (1), with a uniform space step h and time step k.
(b) Prove that the scheme is unconditionally unstable when $\varepsilon=0$. (You may utilize the von Neumann analysis.)
(c) Find the stability condition when $a=0$.
(d) Given a and ε, find conditions for the numerical solution to be nonnegative.

Problem 5. Let $\Omega=(0,1)^{2}$ and its boundary $\Gamma=\partial \Omega$. Consider the boundary value problem: find $u \in H_{0}^{1}(\Omega)$ such that

$$
\begin{array}{ll}
\text { (i) } & -\Delta u=f(x, y), \tag{2}\\
\text { (ii) } & (x, y) \in \Omega, \\
u=0, & (x, y) \in \Gamma,
\end{array}
$$

where Δ is the Laplace operator and f is the source function.
(a) Derive the weak form of (2). Sketch an argument which shows that (2) and its weak form have the same solutions, provided that u is sufficiently smooth.
(b) Let \mathcal{T}_{h} be a uniform triangulation of Ω, where $h=1 /(N+1)$ for some positive integer N, V^{h} the space of piecewise linear functions defined on \mathcal{T}_{h}, and $u^{h} \in V^{h}$ the Galerkin approximation of u. Let $\|\cdot\|$ denote the $L^{2}(\Omega)$-norm. Then, one can see

$$
\begin{equation*}
\left\|\nabla\left(u-u^{h}\right)\right\| \leq\|\nabla(u-v)\|, \quad \text { for any } v \in V^{h} . \tag{3}
\end{equation*}
$$

Prove (3) and describe, in detail, its implications in error analysis for the finite element solution.

Problem 6. Consider the initial-boundary value problem

$$
\begin{array}{cl}
u_{t}-u_{x x}-u_{y y}=f(x, y, t), & (x, y, t) \in \Omega \times J, \\
u(x, y, t)=0, & (x, y, t) \in \Gamma \times J, \tag{4}\\
u(x, y, 0)=u_{0}(x, y), & (x, y) \in \Omega,
\end{array}
$$

where $\Omega=(0,1)^{2}, \Gamma=\partial \Omega$, and $J=(0, T]$ for some $T>0$.
(a) Formulate the Crank-Nicolson central finite difference scheme.
(b) Indicate the accuracy order of the scheme.
(c) Formulate the alternating direction implicit (ADI) method by perturbing the formulation obtained in (a); discuss its efficiency and pitfalls in accuracy.

