Preliminary Examination in Numerical Analysis

June 3, 2004

Instructions:

- Examination is 3 hours: 9am to noon
- Part I: Numerical Linear Algebra
- Part II: Numerical Analysis
- Each part has 3 problems, and 6 problems total. You must do Problems 1 and 5 , but have a choice of solving only 3 of the remaining 4 problems. Mark the problems that you wish to be graded in the table below (5 marks total).
- For problems with multiple parts, you may get full credit for a particular part using results of previous parts even though you fail to finish these previous parts

Problem No.	to be graded?	grade	
1	$\sqrt{ }$		
2			
3			
4			
5	$\sqrt{ }$		
6			
Total			

Part I. Numerical Linear Algebra

Problem 1. Eigenvalue Computation. Let $A \in \mathbb{R}^{n \times n}$, the set of $n \times n$ real matrices.

1. Define the householder transformation $Q \in \mathbb{R}^{n \times n}$, and show how to transform a vector $x \in \mathbb{R}^{n}$ to αe_{1} by a householder transformation, where $\alpha \in \mathbb{R}$ and e_{1} is the first column of I_{n}, the $n \times n$ identity matrix.
2. Outline a way to transform A to an upper Hessenberg matrix H by a similarity transformation. Do A and H have the same eigenvalues? How do their eigenvectors related?
3. Basic QR iteration: $H_{1}=H ; H_{k}=Q_{k} R_{k}, H_{k+1}=R_{k} Q_{k}$ for $k=$ $1,2, \ldots$. But this basic QR iteration is usually too slow to have much practical value. Shifts σ_{k} must be introduced to speed up convergence. Describe the current practice of the use of shifts in QR iteration for real matrix A. What do you expect R_{k} converging to?
4. Obviously we may apply QR iteration directly to A, instead of transforming A to H first. Why not?

Problem 2. Let $A \in \mathbb{R}^{(n+1) \times n}$ be in the "upper Hessenberg" form, i.e., the submatrix of A 's first n rows is upper Hessenberg and A 's last row is $a_{n+1, n} e_{n}^{T}$. Assume $a_{i+1, i} \neq 0$ for $1 \leq i \leq n$. Outline a method to solve

$$
\min _{x}\|A x-b\|_{2} .
$$

Does it have a unique solution?
Problem 3. Let $A \in \mathbb{R}^{n \times n}$ be nonsingular.

1. Let x and $\widetilde{x}=x+\delta x$ be the solutions of $A x=b$ and $A \widetilde{x}=b+\delta b$, respectively. Show

$$
\frac{\|\delta x\|_{1}}{\|x\|_{1}} \leq \kappa_{1}(A) \frac{\|\delta b\|_{1}}{\|b\|_{1}}
$$

where $\kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1}$.
2 . Let $u, v \in \mathbb{R}^{n}$. If you have subroutine to solve $A x=b$ for any given b, how can you solve $\left(A+u v^{T}\right) y=c$ by calling the subroutine finite many times?

Part II. Numerical Analysis

Problem 4.

1. Denote the intervals that arise in the bisection method by $\left[a_{0}, b_{0}\right]$, $\left[a_{1}, b_{1}\right], \ldots,\left[a_{n}, b_{n}\right]$. Let the midpoint of each interval be $c_{n}=\left(a_{n}+b_{n}\right) / 2$. Show that

$$
\left|c_{n}-c_{n+1}\right|=2^{-n-2}\left(b_{0}-a_{0}\right) .
$$

2. Suppose the method of functional iteration is applied to the function $F(x)=2 x+q x^{2}, \frac{1}{2} \leq q \leq 1$. For which interval does this iteration $x_{n+1}=F\left(x_{n}\right)$ converge ? Show why.
3. What is the order of convergence for $x_{n+1}=F\left(x_{n}\right)$ above?

Problem 5.

1. Find the Chebyshev polynomial interpolation P_{2} that approximates $f(x)=x e^{2 x}$ on $[-1,1]$ and find the error bound for $\left|f(x)-P_{2}(x)\right|$.
2. Find the best approximation to $f(x)=e^{x}+x$ by a polynomial $g(x)=c_{1} x+c_{0}$ on the interval $[-1,1]$ using the norm:

$$
\|f\|=\left[\int_{-1}^{1}[f(x)]^{2} d x\right]^{1 / 2}
$$

Problem 6.

1. Establish a formula of the following form with highest accuracy,

$$
f^{\prime}(x) \sim \frac{1}{2 h}[a f(x-2 h)+b f(x-h)+c f(x)] .
$$

What is a, b, c and the error?
2. Using the method of undetermined coefficients, determine A and B in the following Adams-Bashforth formula:

$$
x_{n+1}=x_{n}+h\left[A f_{n}+B f_{n-1}\right] .
$$

3. Show that the following multistep method

$$
x_{n}-x_{n-2}=h\left(f_{n}-3 f_{n-1}+4 f_{n-2}\right)
$$

is convergent.

