Preliminary Examination in Numerical Analysis

June 32005

Instructions:

- Examination is 3 hours: 9am to noon
- Part I: Numerical Linear Algebra
- Part II: Numerical Analysis
- Each part has 3 problems, and 6 problems total. You must do Problems 2 and 4 , but have a choice of solving only 3 of the remaining 4 problems. Mark the problems that you wish to be graded in the table below (5 marks total).
- For problems with multiple parts, you may get full credit for a particular part using results of previous parts even though you fail to finish these previous parts

Problem No.	to be graded?	grade
1		
2	$\sqrt{2}$	
3		
4	$\sqrt{ }$	
5		
6		
Total		

Part I. Numerical Linear Algebra

Problem 1. Let $A \in \mathbb{R}^{n \times n}$.

1. Prove that if $\|A\|<1$, then $A^{m} \rightarrow 0$ as $m \rightarrow+\infty$, where $\|\cdot\|$ is a consistent matrix norm, i.e., $\|X Y\| \leq\|X\|\|Y\|$.
2. The spectral radius $\rho(A)$ is defined as max $|\lambda|$ among all A 's eigenvalues. Prove that $A^{m} \rightarrow 0$ as $m \rightarrow+\infty$ if and only if $\rho(A)<1$.
3. Suppose A is Hermitian. Prove that $A^{m} \rightarrow 0$ as $m \rightarrow+\infty$ if and only if $\|A\|_{2}<1$.

Problem 2. Let $A \in \mathbb{R}^{n \times n}$ be dense.

1. State Schur eigendecomposition theorem.
2. State real Schur eigendecomposition theorem.
3. Outline a practical QR algorithm for computing the real Schur eigendecomposition of A, explain and make sure that your algorithm costs $O\left(n^{3}\right)$.

Problem 3. Let $L \in \mathbb{R}^{n \times n}$ be lower triangular and consider linear system $L x=b$.

1. Devise an algorithm to numerically solve $L x=b$ for x.
2. Present a backward error analysis of your algorithm, i.e., show that the numerical solution \widetilde{x} satisfies exactly $(L+E) \widetilde{x}=b+f$ for some error matrix E and error vector f. Give bounds on E and f.

Part II. Numerical Analysis

Problem 4.

1. (a) Prove that Newton's method converge quadratically (to a simple root if started near the zero). (b) What is the order of convergence if r is a double root of the function f, i.e, $f(r)=f^{\prime}(r)=0 \neq f^{\prime \prime}(r)$? Prove your answer.
2. If the method of functional iteration applied to $F(x)=2+(x-2)^{4}$, starting with $x=2.5$, what is the order of convergence ? Find the range of starting values for which this functional iteration converges. (Note 2 is a fixed point).

Problem 5.

1. (a) When deriving the following Gaussian quadrature, find the polynomial $q(x)$ which defines the nodes x_{i}.

$$
\int_{-1}^{1} f(x) x^{2} d x=\sum_{i=0}^{1} A_{i} f\left(x_{i}\right)
$$

(b) Prove that all the coefficients $\left(A_{i}\right)$ in a Gaussian quadrature formula are all positive.
2. Find a formula

$$
\int_{0}^{1} f(x) d x \sim a f(0)+b f\left(\frac{1}{2}\right)+c f(1)
$$

that is exact when f is a polynomial of degree 2 . What is this formula and why is this exact for polynomial of degree 2 ?

Problem 6.

1. Determine a, b, c and d, so that the cubic spline have minimum $\int_{-1}^{1}\left[S^{\prime \prime}(x)\right]^{2} d x$:

$$
S(x)= \begin{cases}3-2 x^{2}, & x \in[-1,0], \\ a+b x+c x^{2}+d x^{3}, & x \in[0,1]\end{cases}
$$

2. Show that the following multistep method is convergent.

$$
x_{n}-x_{n-2}=h\left(\frac{7}{3} f_{n-1}-\frac{2}{3} f_{n-2}+\frac{1}{3} f_{n-3}\right) .
$$

