Preliminary Examination in Numerical Analysis

June 11, 2021

Instructions:

1. The examination is for 3 hours.
2. The examination consists of eight equally-weighted problems.
3. Attempt all problems.

Problem 1. Let $\mathbf{x} \in \mathbb{R}^{n}$. Show that, in floating point arithmetic, $\mathrm{f}\left(\mathbf{x}^{T} \mathbf{x}\right)=\widehat{\mathbf{x}}^{T} \widehat{\mathbf{x}}$ for some vector $\widehat{\mathbf{x}}$. Find an upper bound for the backward error $\|\widehat{\mathbf{x}}-\mathbf{x}\|_{2}$. (Ignore second order terms of machine precision ε).

Problem 2. Let $A \in \mathbb{C}^{m \times n}$ with $m \geq n$ be a full rank matrix. Consider the block 2 -by- 2 system

$$
\left[\begin{array}{cc}
I & A \\
A^{*} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{r} \\
\mathbf{x}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{b} \\
\mathbf{0}
\end{array}\right],
$$

where I is an m-by- m identity matrix.
(a) Show that this system has a unique solution (\mathbf{r}, \mathbf{x}) and \mathbf{x} solves the linear least squares problem $\min _{\mathbf{x} \in \mathbb{R}^{n}}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}$.
(b) Find the eigenvalues of $\left[\begin{array}{cc}I & A \\ A^{*} & \mathbf{0}\end{array}\right]$ in terms of the singular values of A.

Problem 3. Let $U \in \mathbb{C}^{n \times n}$ be a nonsingular upper triangular matrix.
(a) Show that $U+U^{-1}$ is nonsingular.
(b) Design an algorithm to solve the linear system $\left(U+U^{-1}\right) \mathbf{x}=\mathbf{b}$ in $\mathcal{O}\left(n^{2}\right)$ operations. Note that computing U^{-1} requires $\mathcal{O}\left(n^{3}\right)$ operations. (Hint: use backward substitution.)

Problem 4. Let $A=S+i \mathbf{u u}^{T} \in \mathbb{R}^{n \times n}$ where $S \in \mathbb{R}^{n \times n}$ is a symmetric matrix, $\mathbf{u} \in \mathbb{R}^{n}$, and i is the unit imaginary number. Show how to compute an orthogonal matrix Q such that $Q^{T} A Q=T+\sigma \mathbf{e}_{1} \mathbf{e}_{1}^{T}$, where T is a symmetric triadiagonal matrix, σ is a scalar, and \mathbf{e}_{1} is the first column of I_{n}.

Problem 5. Let f be a positive function defined on $[-1,1]$ and assume

$$
\min _{-1 \leq x \leq 1}|f(x)|=m_{0}, \quad \max _{-1 \leq x \leq 1}\left|f^{(k)}(x)\right|=M_{k}, \quad k=0,1, \ldots
$$

Let $p_{n-1}(f ; \cdot)$ be the Lagrange polynomial of degree $\leq n-1$ interpolating f at the n Chebyshev points $x_{k}=\cos \left(\frac{2 k-1}{2 n} \pi\right)$ for $k=1, \ldots, n$.
(a) Estimate the maximum relative error $r_{n}=\max _{-1 \leq x \leq 1}\left|\frac{f(x)-p_{n-1}(f ; x)}{f(x)}\right|$.
(b) Apply the result to $f(x)=e^{2 x}$.

Problem 6. Use Newton's interpolation formula to derive a quadrature rule of the form

$$
\int_{0}^{1} f(x) x^{\alpha} d x=c_{0} f(0)+c_{1} f(1)+c_{2} f^{\prime}(0)+E(f), \quad \alpha>-1 .
$$

Find c_{0}, c_{1}, c_{2} and an expression for $E(f)$, and specify the degree of exactness.
Problem 7. Consider the following Runge-Kutta method

$$
y_{i+1}=y_{i}+a_{1} h f\left(t_{i}, y_{i}\right)+a_{2} h f\left(t_{i}+\alpha h, y_{i}+\beta h f\left(t_{i}, y_{i}\right)\right), \quad i=0, \ldots, N-1 .
$$

Show that this method cannot have local truncation error $\mathcal{O}\left(h^{3}\right)$ for any choice of the constants a_{1}, a_{2}, α and β.
Problem 8. Consider the following linear multistep method

$$
y_{i+2}=2 y_{i+1}-y_{i}+h\left[f\left(t_{i+1}, y_{i+1}\right)-f\left(t_{i}, y_{i}\right)\right], \quad i=0,1, \ldots, N-2 .
$$

Analyze this method for its order, stability, convergence and region of absolute stability.

