Preliminary Examination in Numerical Analysis

June 2nd, 2023

Instructions:

1. The examination is for 3 hours.
2. The examination consists of eight equally-weighted problems.
3. Attempt all problems.

Problem 1. Show that if an $n \times n$ matrix E satisfies $\|E\|<1$, then

$$
\left\|(I+E)(I-E)^{-1}-I-2 E\right\| \leq \frac{2\|E\|^{2}}{1-\|E\|}
$$

where $\|\cdot\|$ is any matrix operator norm.
Problem 2. Let $A \in \mathbb{R}^{m \times n}$ with $m \geq n>r=\operatorname{rank}(A), \mathbf{b} \in \mathbb{R}^{m}$, and $C \in \mathbb{R}^{n \times n}$ be symmetric positive definite. Consider the minimization problem $\min _{\mathbf{x} \in \mathbb{R}^{n}}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}+\lambda \mathbf{x}^{T} C \mathbf{x}$.
(a) If $\lambda>0$, then find the normal equation.
(b) If $\lambda=0$, then use the singular value decomposition $A=U \Sigma V^{T}$ to find all the solutions of the problem.
Problem 3. Let $A=U \Sigma V^{T} \in R^{m \times n}$ be the singular value decomposition of A, where $m \geq n$ and Σ is $n \times n$. If $\left\|A^{T} A-I_{n}\right\|_{2}=\epsilon<1$, prove that $\left\|A-U V^{T}\right\|_{2} \leq \epsilon$.

Problem 4. Let μ_{1} and μ_{2} be two approximate eigenvalues of an $n \times n$ matrix A and let x_{1} and x_{2} be two corresponding approximate eigenvectors. Assume x_{1} and x_{2} are orthogonal to each other and $\left\|x_{1}\right\|_{2}=\left\|x_{2}\right\|_{2}=1$. Let $R=A X-X D$ where $X=\left[x_{1}, x_{2}\right]$ and $D=\left(\begin{array}{ll}\mu_{1} & \\ & \mu_{2}\end{array}\right)$. Prove that there exists an $n \times n$ matrix E with $\|E\|_{2} \leq\|R\|_{2}$ such that μ_{1} and μ_{2} are the eigenvalues of $A+E$ with x_{1} and x_{2} as corresponding eigenvectors.

Problem 5. Construct the weighted Newton-Cotes formula

$$
\int_{0}^{1} f(x) x^{2} d x=a_{0} f(0)+a_{1} f\left(\frac{1}{2}\right)+a_{2} f(1)+E(f)
$$

and derive an expression for $E(f)$ in terms of f. Specify the degree of exactness, i.e., the largest integer d such that $E\left(x^{d}\right)=0$.

Problem 6. Suppose that $f \in C^{n}([a, b])$. Let p_{n-1}, a polynomial of degree at most $n-1$, be the Lagrange interpolation polynomial of f, with interpolation points

$$
x_{k}=\frac{1}{2}(a+b)+\frac{1}{2}(b-a) \cos \left(\frac{2 k-1}{2 n} \pi\right), \quad k=1, \ldots, n .
$$

Show that

$$
\left|f(x)-p_{n-1}(x)\right| \leq \frac{1}{2^{n-1} n!}\left(\frac{b-a}{2}\right)^{n} \max _{\xi \in[a, b]}\left|f^{(n)}(\xi)\right|
$$

(Hint: Use Chebyshev nodes)
Problem 7. When f is a smooth function, prove the following forward-difference formula

$$
f^{\prime}(x)=\frac{f(x-h)-8 f\left(x-\frac{h}{2}\right)+8 f\left(x+\frac{h}{2}\right)-f(x+h)}{6 h}+O\left(h^{4}\right)
$$

Problem 8. Consider the one-step method for the initial value problem $y^{\prime}=f(t, y), y(0)=y_{0}$,

$$
y_{n+1}=y_{n}+h\left[(1-\theta) f\left(t_{n}, y_{n}\right)+\theta f\left(t_{n+1}, y_{n+1}\right)\right], \quad n=0,1, \ldots,
$$

where $\theta \in[0,1]$ is a parameter. Find all θ so that the method is A -stable.

