DEPARTMENT OF MATHEMATICS

Topology Preliminary Examination January 13, 2014

- 1 Consider the topology on R given by the subbasis consisting of open rays (a, ∞) .
 - (a) Given a subset $A \subset \mathbf{R}$, describe the closure \bar{A} in this topology.
 - (b) Consider the sequence $x_n = n$. Does it converge? If so, to what?
- **2** Let $D \subset X$ be a dense subset of a metric space X. Suppose $f: X \longrightarrow Y$ restricts to a homeomorphism $f|_D: D \cong Y$. Show that D = X.
- 3 Let G be a topological group. Prove that every two components of G are homeomorphic.
- 4 Let X be a locally compact second countable space. Prove that there is a sequence $K_1 \subset K_2 \subset K_3 \subset \cdots$ of compact subspaces of X such that X is the union of the interiors of K_n 's:

$$X = \bigcup_{n} \operatorname{Int} K_{n}.$$

5 Let $\mathrm{GL}(n,\mathbf{R})$ denote the space of invertible $n\times n$ matrices, and let $\mathrm{SL}(n,\mathbf{R})$ denote the space of $n\times n$ matrices of determinant 1. Consider the map

$$\phi: \mathrm{GL}(n,\mathbf{R}) \longrightarrow \mathrm{SL}(n,\mathbf{R})$$

that divides the first column of M by $\det(M)$.

- (a) Is ϕ continuous for all $n \geq 1$? Why or why not?
- (b) Is ϕ a retraction for all $n \ge 1$? Why or why not?
- (c) Is ϕ a covering map for all $n \ge 1$? Why or why not?
- 6 Let P^n denote n-dimensional real projective space, i.e. the space obtained by identifying x and -x for all $x \in S^n$. Prove that P^{3k} is not homeomorphic to $\prod_{i=1}^k S^1 \times \prod_{i=1}^k S^2$.
- 7 Let E be connected and locally connected, and let $p:E\longrightarrow B$ be a covering map. Suppose $f:S^2\longrightarrow E$ is continuous and that $p\circ f$ is nullhomotopic. Show that f must be nullhomotopic.
- 8 Let X be a compact surface with a cell decomposition which has a single 0-cell, three 1-cells a, b, and c, and a single 2-cell attached according to $abacb^{-1}c^{-1}$. Determine the homeomorphism type of the surface.