DEPARTMENT OF MATHEMATICS

TOPOLOGY PRELIMINARY EXAMINATION JANUARY 8, 2016

- 1 Show that the intersection of two compact subspaces A and B of a Hausdorff space X is compact.
- 2 Show that a retract of a Hausdorff space must be a closed subset.
- **3** Recall that if X_1, X_2, \ldots, X_n are disjoint topological spaces, the *disjoint union* $X_1 \sqcup X_2 \sqcup \ldots \sqcup X_n$ is the union $X = X_1 \cup X_2 \cup \ldots \cup X_n$ with the topology in which $U \subset X$ is open if and only if $U \cap X_i$ is open for all $i = 1, 2, \ldots, n$.

Show that if X has finitely many connected components, then X is homeomorphic to the disjoint union of its components.

4 For two spaces X, Y, let Map(X, Y) be the set of continuous maps $X \longrightarrow Y$ with the compact-open topology. Let $Y \subset Z$ and let $i: Y \longrightarrow Z$ be the inclusion map. Show that the induced map

$$i_{\star} : \operatorname{Map}(X, Y) \longrightarrow \operatorname{Map}(X, Z),$$

defined by $i_{\star}(f) = i \circ f$, is a homeomorphism onto its image.

- 5 Let $f: S^1 \longrightarrow T^2$ be the inclusion f(x) = (x, 1) and $g: S^1 \longrightarrow T^2$ be the inclusion g(x) = (1, x). Show that f is not homotopic to g.
- 6 Let G be a topological group with multiplication μ and identity e. (Also assume G is path connected and locally path connected.) If (\tilde{G}, p) is a connected cover of G and $\tilde{e} \in \tilde{G}$ satisfies $p(\tilde{e}) = e$, show that there is a unique multiplication on \tilde{G} for which \tilde{e} is the identity and p is a homomorphism.
- 7 Show that there is no covering map, in either direction, between the projective plane \mathbf{RP}^2 and the Klein bottle K.
- 8 Suppose A is a retract of X with inclusion i and retraction r. If $i_*\pi_1(A)$ is a normal subgroup of $\pi_1(X)$, show that

$$\pi_1(X) \cong i_\star \pi_1(A) \times \operatorname{Ker}(r_\star).$$