DEPARTMENT OF MATHEMATICS

Topology Preliminary Examination January 9, 2018

- 1 Let T be the cofinite topology on \mathbb{Z} . Show that the sequence $\{1, 2, 3, \ldots\}$ converges to every point of (\mathbb{Z}, T) . What are the convergent sequences in (\mathbb{Z}, T) ?
- 2 Let $p: X \longrightarrow Y$ be a continuous open surjection, and let $R \subset X \times X$ be defined by

$$R = \{(x_1, x_2) \in X \times X \mid p(x_1) = p(x_2)\}.$$

Show that Y is Hausdorff if and only if $R \subset X \times X$ is closed.

- 3 Suppose G is a topological group, and let C be the connected component of the identity element $e \in G$. Show that C is a normal subgroup of G (normal in the sense of group theory, meaning that for all $g \in G$, we have $gCg^{-1} \subset C$).
- 4 Let $X = \mathcal{C}(S^1, S^1)$ be the space of continuous functions $S^1 \longrightarrow S^1$ with the compact-open topology. Is X compact?
- 5 Prove that $S^1 \times \{x_0\}$ is a retract of $S^1 \times S^1$ but that it is not a deformation retract of $S^1 \times S^1$ for any $x_0 \in S^1$.
- 6 Let F be a four-point subset of the boundary S^1 of the unit disk D^2 . Compute $\pi_1(D^2/F)$.
- 7 Prove that there is no map $f: S^n \longrightarrow S^1$ for $n \geq 2$ such that f(-x) = -f(x) for all $x \in S^n$.
- 8 Find all two-sheeted coverings of the Klein bottle up to equivalence.