DEPARTMENT OF MATHEMATICS

Topology Preliminary Examination
January 8, 2020

1 Let \mathcal{B} be the collection of subsets of \mathbb{R} of the following two forms:

- sets of the form $(-b,-a) \cup(a, b)$, where $0<a<b$
- sets of the form $(-\infty,-d) \cup(-c, c) \cup(d, \infty)$, where $0<c<d$.
(a) Show that \mathcal{B} is a basis for a topology on \mathbb{R}
(b) To which point(s) in \mathbb{R} does the sequence $x_{n}=1-\frac{1}{n}$ converge?

2 Let Z be the subspace $(\mathbb{R} \times 0) \cup(0 \times \mathbb{R})$ of \mathbb{R}^{2}. Define $g: \mathbb{R}^{2} \longrightarrow Z$ by

$$
g(x, y)= \begin{cases}(x, 0) & \text { if } x \neq 0 \\ (0, y) & \text { if } x=0\end{cases}
$$

(a) Is g continuous, when Z is equipped with the subspace topology?
(b) Show that in the quotient topology induced by g, the space Z is not Hausdorff.

3 Let G be a topological group acting on a space X. Show that if both G and X / G are connected, then X is connected.

4 Let $C(X, Y)$ denote the set of continuous maps $X \longrightarrow Y$. Let $M(X, Y)$ denote the set $C(X, Y)$ equipped with some topology for which the evaluation map

$$
M(X, Y) \times X \longrightarrow Y
$$

is continuous. Also, let $\operatorname{Map}(X, Y)$ denote $C(X, Y)$ equipped with the compactopen topology. Show that the identity map $M(X, Y) \longrightarrow \operatorname{Map}(X, Y)$ is continuous.

5 A subset $A \subset \mathbb{R}^{n}$ is star convex if there is a point $a_{0} \in A$ so that for all $x \in A$, the line segment from a_{0} to x is entirely contained in A.
(a) Show that any star convex subset is simply connected.
(b) Show that if α and β are paths in a star convex set such that $\alpha(0)=\beta(0)$ and $\alpha(1)=\beta(1)$, then α and β are path-homotopic.

6 Define X to be the quotient of S^{2} by imposing an antipodal relation, but only on the equator, so that $(x, y, 0) \sim(-x,-y, 0)$. Compute $\pi_{1}(X)$.

7 Let K denote the Klein bottle.
(a) Find $\pi_{1}(K)$.
(b) Let X be a connected and locally path-connected space such that $\pi_{1}(X) \cong \mathbb{Z} / 3$. Show that there does not exist a covering map $X \longrightarrow K$.

8 (a) Show that S^{3} is not homeomorphic to $S^{2} \times S^{1}$. The Hopf fibration $\eta: S^{3} \longrightarrow S^{2}$ is the quotient map for a free S^{1}-action on S^{3}. (So $\eta^{-1}(x)$ is homeomorphic to S^{1} for all $x \in S^{2}$.)
(b) A section for η is a map $u: S^{2} \rightarrow S^{3}$ so that $\eta \circ u=\mathrm{id}_{S^{2}}$. Show that a section u would define a continuous bijection

$$
S^{2} \times S^{1} \rightarrow S^{3}
$$

by $(x, z) \mapsto u(x) z$. (Here S^{1} acts on $S^{3} \subset \mathbb{C}^{2}$ via complex multiplication.)
(c) Conclude that the Hopf fibration does not have a section.

