Topology Preliminary Exam
 Jan. 2022

1. Let $X \subset \mathbb{R}^{2}$ be the subspace consisting of points (x, y) such that at least one of x and y is rational. Show that X is connected.
2. The subspace $\mathbb{Z} \subset \mathbb{R}$ is also a subgroup (under addition). We can therefore consider both the quotient \mathbb{R} / \mathbb{Z}, in which the subspace \mathbb{Z} is collapsed to a point, and also the quotient denoted $\mathbb{Z} \backslash \mathbb{R}$, in which we are passing to orbits under the \mathbb{Z}-action on \mathbb{R}. Show that these quotient spaces are not homeomorphic.
3. Let X be a topological space. Let $O(X)$ be the set of open subsets of X. For $\left\{K_{i}\right\}_{i \in I}$, a set of compact subsets of X, let

$$
V_{\left\{K_{i}\right\}}=\left\{U \subset X \mid U \text { is open and } \exists i \in I \text { such that } K_{i} \subset U\right\}
$$

(a) Show that the subsets of $O(X)$ of the form $V_{\left\{K_{i}\right\}}$ define a topology on $O(X)$. Hint: The case in which some K_{i} is empty and the case in which the indexing set I is empty are both important.
(b) Produce a homeomorphism $O(X) \cong \operatorname{Map}(X, S)$, where $S=\{0,1\}$ with topology $\{\emptyset,\{1\},\{0,1\}\}$ and Map denotes the mapping space from X to S with the compactopen topology.
4. Show that there does not exist a retraction $r: X \longrightarrow A$ in the following situations:
(a) $X=S^{1} \times D^{2}$ and A is the boundary torus $A=S^{1} \times S^{1}$.
(b) $X=S^{2} \subset \mathbb{R}^{3}$ and

$$
A=\left\{(x, y, 0) \mid x^{2}+y^{2}=1\right\} \cup\left\{(0, y, z) \mid y^{2}+z^{2}=1\right\} .
$$

5. Let M be a compact orientable surface of genus 2. Prove there exists

$$
f: M \rightarrow S^{1}
$$

continuous, which does not lift to a continuous map from M to \mathbb{R}.
(Here 'lift' refers to the exponential covering map $\mathbb{R} \rightarrow S^{1}$.)
6. Let X be the space obtained from the torus $S^{1} \times S^{1}$ by attaching a Moebius band M by a homeomorphism from the boundary circle of M to $S^{1} \times\left\{x_{0}\right\} \subset S^{1} \times S^{1}$ (for $x_{0} \in S^{1}$ fixed). Calculate $\pi_{1}\left(X, x_{0}\right)$.
7. Let X be a path-connected space with $H_{1}(X, \mathbb{Z})=0$.
(a) What can you deduce about $\pi_{1}\left(X, x_{0}\right)$?
(b) Describe how you would construct a space X satisfying $\pi_{1}\left(X, x_{0}\right) \neq H_{1}(X)=0$. (Recall that the commutator subgroup is normal.)
8. Let A, B be path connected open (nonempty) subsets of S^{n} so that $A \cup B=S^{n}$.
(a) If $n \geq 2$, prove $A \cap B$ is path connected.
(b) Is the conclusion still true for $n=1$?

