DEPARTMENT OF MATHEMATICS

TOPOLOGY PRELIMINARY EXAMINATION JUNE 1, 2015

- 1 Find all connected, finite metric spaces.
- 2 Let I = [0, 1] and O = (0, 1) be the closed and open unit intervals, respectively. Let $X = (I \times I)/(O \times O)$.
 - (a) Show that X is not Hausdorff.
 - (b) Is X homeomorphic to $(I/O) \times (I/O)$?
 - (c) Consider the constant sequence at (1/2, 1/2). To what point(s) does the sequence converge?
- 3 Let $X = \mathbf{R} \times \{0, 1\}$, where **R** has the usual topology and $\{0, 1\}$ has the trivial (indiscrete) topology. Find two compact sets $A, B \subset X$ such that $A \cap B$ is not compact.
- 4 For two spaces X, Y, we write Map(X, Y) for the set of continuous maps $X \longrightarrow Y$ equipped with the compact-open topology.

Let Q be the quotient space obtained from collapsing a non-empty closed subspace A of a compact Hausdorff space X to a point, and let $\pi: X \longrightarrow Q$ be the quotient map. Prove that the image of the induced map $\pi^* : \operatorname{Map}(Q, Y) \longrightarrow \operatorname{Map}(X, Y)$ defined by $\pi^*(g) = g \circ \pi$ consists of the maps $f: X \longrightarrow Y$ for which f(A) is a single point.

- 5 Show that every homomorphism $\pi_1(S^1) \longrightarrow \pi_1(S^1)$ is of the form ϕ_{\star} for some $\phi: S^1 \longrightarrow S^1$.
- 6 Let $x \neq y$ be two points of a compact connected surface M. Show that $M \{x, y\}$ is *not* simply-connected.
- 7 Find all two-fold connected coverings of the Klein Bottle.
- 8 The double mapping cylinder of maps $f : A \longrightarrow X$ and $g : A \longrightarrow Y$ is the quotient of the disjoint union $X \amalg (A \times I) \amalg Y$ under the relation generated by $f(a) \sim (a, 0)$ and $g(a) \sim (a, 1)$.
 - (a) Compute the fundamental group of the double mapping cylinder of the degree 3 and degree 5 maps $S^1 \longrightarrow S^1$.
 - (b) Compute the fundamental group of the double mapping cylinder of the degree 4 and degree 6 maps $S^1 \longrightarrow S^1$.