Topology Preliminary Exam Spring 2020

- 1. Show that if a subspace A of a space X is connected then so is its closure \overline{A} .
- 2. (a) If X consists of n points with the discrete topology show that Map(X, Y) is homeomorphic to $\underbrace{Y \times Y \times \ldots \times Y}_{n}$.
 - (b) If X has the trivial topology and Y is Hausdorff, identify the space Map(X, Y).
- 3. Consider the relation on $(0, \infty)$ given by $x \sim y$ if there is an integer n such that $x/y = 2^n$. Prove that \sim is an equivalence relation and show that the quotient space $(0, \infty)_{/\sim}$ is homeomorphic to S^1 .
- 4. Show that if G is a locally compact and Hausdorff topological group and H is a subgroup, then G/H is locally compact.
- 5. Let $p: \overline{X} \to X$ be a covering map and let $A \subseteq X$ be a connected subspace. Let \overline{A} be a component of $p^{-1}A \subseteq \overline{X}$.
 - (a) Show that the restriction $p: \overline{A} \to A$ is a covering map.
 - (b) Assume that \overline{X} is the universal cover of X. Is \overline{A} the universal cover of A?
- 6. Let $f: D^2 \to \mathbb{R}^2$ be a continuous map. Suppose $f|_{S^1}$ factors through $\mathbb{R}^2 \setminus 0$. That is, there is a commutative diagram

$$D^{2} \xrightarrow{f} \mathbb{R}^{2}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$S^{1} \xrightarrow{g} \mathbb{R}^{2} \setminus 0$$

If g induces a nonzero map

$$\pi_1(S^1) \to \pi_1(\mathbb{R}^2 \setminus 0),$$

show there exists a point $x \in D^2$ such that f(x) = 0.

- 7. Let $T_2 = T \# T$ be the connected sum of two copies of the torus $T = S^1 \times S^1$. Show that T_2 is not a covering space of T. (You can use facts about fundamental groups of surfaces.)
- 8. Let X be a path-connected space with fundamental group $\pi_1(X) \cong \Sigma_3$, the symmetric group of order 6. Let $\alpha \colon S^1 \to X$ be a loop of order two, and let $Y = X \cup_{\alpha} D^2$ be the space obtained by attaching a disk to X by gluing the boundary of D^2 to X using the attaching map α . Find $\pi_1(Y)$.