Topology Preliminary Exam June, 2021

- **1.** Let x be a point in S^1 .
- a. Prove that $S^1 \{x\}$ (as a subspace of S^1) is homeomorphic to \mathbb{R} (with the Euclidean topology).
- b. Prove that no homeomorphism $S^1 \{x\} \cong \mathbb{R}$ extends to a continuous map $S^1 \to \mathbb{R}$.

2. Assume $p: Y \to X$ is a quotient map. Further, assume that X is connected and that, for each $x \in X$, the subspace $p^{-1}(x) \subseteq Y$ is connected. Prove that Y is connected.

- **3.** a. Let X and Y be locally compact spaces and assume that Y is Hausdorff. Show that C(X, Y), the set of continuous functions from X to Y endowed with the compact open topology, is Hausdorff.
- b. Fix Y and assume that there exists a nonempty space X with the property that C(X, Y) is Hausdorff. Show that Y must be Hausdorff.
- 4. Assume that X is a Hausdorff space in which no singleton is open.
- a. Let U be a nonempty open subset of X and let $x \in X$. Prove that there exists $V \subseteq U$ such that $x \notin \overline{V}$.
- b. Further assume that X is compact and let \mathbb{N} be the set of natural numbers with the discrete topology. Prove that there is no surjective continuus map $f: \mathbb{N} \to X$. (Hint find a nested sequence of open sets whose closures miss more and more points in the image of f.)

5. Show that the projection map $X \times Y \to X$ is a covering map when Y has the discrete topology.

6. Let $A \subset \mathbb{R}^2$ be the unit circle and let X be the union of A with the line segment $[-1,1] \times \{0\}$. Show that A is a retract of X but not a deformation retract of X.

7. Let G be a topological group with multiplication μ and identity e. (Also assume G is path connected and locally path connected.) If (\tilde{G}, p) is a cover of G and $\tilde{e} \in \tilde{G}$ satisfies $p(\tilde{e}) = e$, show that there is a unique continuous multiplication on \tilde{G} that commutes with p and has \tilde{e} as the unit.

8. Construct a non-normal covering space of $S^1 \vee S^1$.