Topology Preliminary Exam June 2022

1. Let X be a topological space, and A and B compact subspaces.

- (a) Show that $A \cup B$ is compact.
- (b) Show that if X is Hausdorff, then $A \cap B$ is compact.
- (c) Give a counterexample to part (b) in the case when X is not Hausdorff.

2. Let X and Y be locally compact Hausdorff spaces with one-point compactifications \tilde{X} and \tilde{Y} . Show that there is a quotient map $\tilde{X} \times \tilde{Y} \to \tilde{X} \times Y$, where $\tilde{X} \times Y$ is the one-point compactification of $X \times Y$.

3. Let *I* be the closed interval and let C(I, X) be the set of continuous functions from *I* to *X* equipped with the compact open topology. Show that C(I, X) is path-connected if and only if *X* is path-connected.

4. Show that the quotient map $q: S^2 \to \mathbb{R}P^2$ is not homotopic to a constant map.

5. Let $f: D^2 \to \mathbb{R}^2$ be a continuous map that leaves each point of the boundary circle S^1 fixed. Show $D^2 \subset f(D^2)$.

- 6. (a) Let A be a single circle in \mathbb{R}^3 . Compute $\pi_1(\mathbb{R}^3 \setminus A)$. (Remember $\mathbb{R}^3 \setminus A$ is the complement of A in \mathbb{R}^3 .)
 - (b) Let A and B be disjoint circles in \mathbb{R}^3 . Compute $\pi_1(\mathbb{R}^3 \setminus (A \cup B))$.
 - (c) How does $\pi_1(\mathbb{R}^3 \setminus (A \cup B))$ change if the circles are linked?

7. Let X be the space obtained by beginning with S^2 and attaching two line segments between the poles.

- (a) Calculate the fundamental group of X for any choice of base point.
- (b) Describe the universal cover of X.
- (c) Calculate the integral homology of X.

8. Suppose the two ends of $S^2 \times I$ are glued together via a map $S^2 \to S^2$ of degree d. (Recall that a map $S^n \to S^n$ is **degree** d if it induces the multiplication by d map on $H_n(S^n)$.) Use the Mayer-Vietoris sequence to calculate the homology of the resulting space X.