DEPARTMENT OF MATHEMATICS

TOPOLOGY PRELIMINARY EXAMINATION JUNE 5, 2023

INSTRUCTIONS: A necessary condition to pass this exam is to completely solve one point-set question and one of the more algebraic questions. An excellent exam will completely solve five problems and have some partial credit on the remaining questions.

- Suppose that *f* : *X* → *Y* is a continuous map such that there exists a continuous map *g*: *Y* → *X* such that the composition *f* ∘ *g*: *Y* → *Y* is the identity map. Show that *f* is a quotient map.
- **2)** Suppose that *X* is compact and that points in *Y* are closed. Show that if $f: X \longrightarrow Y$ is a local homeomorphism, then, for any point $y \in Y$, the preimage $f^{-1}(y)$ is finite. If *Y* is also a connected Hausdorff space, show that *f* is surjective.
- **3)** Let $f: W \longrightarrow X$ and $g: Y \longrightarrow Z$ be continuous. Let Map(X, Y) denote the set of continuous maps $X \longrightarrow Y$, equipped with the compact-open topology, and similarly for Map(W, Z). Show that the function $\phi: Map(X, Y) \longrightarrow Map(W, Z)$, defined by $\phi(h) = g \circ h \circ f$, is continuous.
- 4) Let $T^2 = S^1 \times S^1$ be the torus, and let x, y, and z be distinct points in T^2 . Find the fundamental group of $X = T^2 \{x, y, z\}$ (the complement of three points in T^2).
- 5) Recall that the real projective plane \mathbb{RP}^2 is pointed via a canonical inclusion $\mathbb{RP}^0 \hookrightarrow \mathbb{RP}^2$.
 - (a) Show that $\pi_1(\mathbb{RP}^2 \vee \mathbb{RP}^2)$ is isomorphic to $\pi_1(\mathbb{RP}^2) * \pi_1(\mathbb{RP}^2)$.
 - (b) Show that every map $\mathbb{RP}^2 \vee \mathbb{RP}^2 \to S^1$ is homotopic to a constant map.
- 6) Suppose that *E* and *B* are connected and locally path-connected. Let $p: E \longrightarrow B$ be a two-sheeted covering. Show that there is a free action of $G = C_2$, the group of order two, on *E* such that the quotient E/G is homeomorphic to *B*.

(OVER)

- 7) Let $S^2 \subset S^3 \subset S^4$ be equatorial inclusions.
 - (a) Compute the relative homology groups $H_*(S^4, S^3)$.
 - (b) Compute the relative homology groups $H_*(S^4, S^2)$.
- 8) (a) Let *X* be obtained from a torus $S^1 \times S^1$ by attaching a Mobius band via a homeomorphism from the boundary circle of the Mobius band to a circle $S^1 \times x_0$ in the torus. Use the Mayer-Vietoris sequence to compute the homology of *X*.
 - (b) Let Y be obtained from ℝP² by attaching a Mobius band via a homeomorphism from the boundary circle of the Mobius band to the standard ℝP¹ in ℝP². Use the Mayer-Vietoris sequence to compute the homology of Y.