
Neville Fogarty

Research Statement

1 Algebraic Coding Theory

When we transmit data over a noisy channel (e.g., satellite) to a receiver, we run the risk of our
data becoming corrupted. Fixing the channel is not typically an option, so instead we must make
our data noise-proof. A naive method of doing this is simply sending the same data multiple times.
However, the benefit of the redundancy created may be offset by the cost of sending a lengthy
message more than once in full. Indeed in some cases, such as transmissions through space via
satellite, sending a message more than once may be entirely impractical. The study of algebraic
coding theory is about balancing the added redundancy with its costs and finding new ways to
efficiently encode and decode information.

Since the symbols of the to-be-transmitted data come from a finite set, algebraic coding theory
falls, in large part, within linear algebra over finite fields. (Particular codes may draw from other
areas, such as elliptic curves and polynomial rings, as well.) Let F be a finite field of size q. At this
point, one may simply think of F2 = {0, 1}, where we add and multiply modulo 2. A linear code C
is a k-dimensional subspace of the vector space Fn. Each vector c ∈ C is a codeword; each codeword
represents a known message. When we send the codeword c over a noisy channel, it picks up an
error, e ∈ Fn. (Note that the error e could be the zero vector.) The receiver gets the vector c + e.
Armed with the knowledge of which codewords are contained within the subspace C, the receiver
can often recognize codewords that were affected by channel noise (provided e /∈ C). This is called
error detection.

Moreover, when we create codes wisely, the receiver can not only detect erroneous codewords,
but also correct them by changing them to the ‘closest’ allowable codewords. The Hamming dis-
tance, dist(c, c′), between two vectors c, c′ ∈ C is defined as the number of entries in which the two
vectors differ. For example, dist((1, 0, 1, 1), (0, 1, 1, 0)) = 3, as the vectors differ in the first, second,
and fourth entries. Then the minimum distance of code C is the smallest distance between any
two distinct codewords. In order to correct as many errors as possible, we want to employ a code
with a large distance. If a code has distance d, then the receiver will correctly decode a received
vector c+ e to c, provided that e has at most b(d− 1)/2c non-zero entries. Otherwise, the receiver
will not always be able to decode error-laden vectors correctly.

2 Cyclic Codes

A cyclic code is a code in which cyclic shifts of codewords produce other codewords. That is,
if (c0, c1, ..., cn−2, cn−1) ∈ C, then (cn−1, c0, c1, ..., cn−2) ∈ C as well. Introduced by Prange in 1957
[11], cyclic codes are known to have nice error-correcting properties if suitably chosen. We obtain
a cyclic code by considering the ideals of the quotient ring F[x]/(xn − 1). Since F[x] is a principal
ideal domain, each ideal in the quotient ring is generated by a single element. Naturally, we call the
monic polynomial (coset representative) of minimum degree in the ideal the generator polynomial,
but other polynomials can generate the same code. We get the codeword vectors by reading off the
coefficients of the polynomials in the given ideal. Notice that multiplying a polynomial in our ideal
by x is the same as applying a right cyclic shift to the associated codeword.

We say that e ∈ F[x]/(xn − 1) is an idempotent if e2 = e. Because of the presence of zero
divisors in the ring (provided xn − 1 is not irreducible), there are indeed idempotents other than 0

and 1. Moreover, if a code C is generated by e, we say that e is a generating idempotent of C.
Provided that n is relatively prime to q, the size of the field F, one can show that C contains a
unique generating idempotent. (See, for example, [7].)

When we want to create a code, finding a generator polynomial amounts to factorizing xn −
1, which can be difficult. On the other hand, idempotents can easily be found with the aid of
cyclotomic cosets. Thus it is beneficial to understand generating idempotents for cyclic codes.

3 Skew-constacyclic Codes

In 2007, Boucher, Geiselmann, and Ulmer [1] generalized cyclic codes to skew-constacyclic codes. In-
stead of considering a standard polynomial ring F[x], they looked at the skew-polynomial ring R :=
F[x; θ], where θ is an automorphism of F. The skew-polynomial ring was introduced by Ore in 1933
[10]. While addition of polynomials in R is identical to addition in the standard polynomial ring,
multiplication is different. Critically, xa = θ(a)x for all a ∈ F. If θ is the identity, we are back in
the standard polynomial ring, but otherwise R is noncommutative. Despite the noncommutativity,
one can still perform left and right division with remainder.

Skew-constacyclic codes are certain subspaces of the quotient R/•(xn − a), where •(xn − a) is
the left ideal generated by xn − a, with a ∈ F∗. This clearly generalizes cyclic codes. Different
from the classical cyclic case, the quotient R/•(xn − a) is not a ring in general, but rather a left R-
module. By definition, skew-constacyclic codes are the left R-submodules of that quotient module.
SinceR/•(xn − a) is naturally isomorphic as a left F-vector space to Fn, we again obtain linear codes
as described earlier. Similar to the classical cyclic case, one obtains that each left-submodule is
generated by the coset of a right divisor of xn−a. Thus one has an analogous concept of a generator
polynomial. To capture data about the submodule, we typically call these codes (θ, a)-constacyclic
codes. Throughout this statement, we keep θ fixed and call the codes just described a-constacyclic
codes.

Recall that error-correcting quality relies on having a large minimum distances. In [1] and
[4], skew-constacyclic codes were presented for particular parameters (such as code length n) that
improved upon the largest known minimum distances of other codes. This strongly suggests that
there is indeed potential in this burgeoning area of coding theory.

4 Duals of a-constacyclic Codes

The dual code of a code is the space orthogonal to the code when viewed as a subspace of Fn. More
precisely, the dual code of a code C ∈ Fn is denoted by C⊥ := {x | x · c = 0 for all c ∈ C}. In [2],
Boucher and Ulmer showed the following theorem:

Theorem 1. If C is an a-constacyclic code, then C⊥ is an a−1-constacyclic code. Moreover, if C
has generator polynomial g, where xn− a = hg, then C⊥ has generator polynomial ĥ, given as ĥ :=
k∑

i=0
θi−n(hk−i)x

i, where h =
∑k

i=0 hix
i. Thus ĥ is a right divisor of xn − a−1.

This generalizes a well-known result from the theory of cyclic codes. The proof in [2] relies
primarily on computations inside the code viewed as a vector subspace. In [5], we reformulated
the work of [2] to instead rely on the properties of the skew-polynomial ring. In doing so, we
introduced a tool called a (skew-generalized) circulant, a matrix in Fn×n which captures the effects
of multiplying a skew polynomial g by powers of x on the left. Precisely, the ith row of the circulant
is the list of left coefficients of the polynomial xi−1g modulo •(xn − a). This matrix clearly depends
on the constant a, so we denote it by Ma(g).

N. Fogarty, 2

Using properties of the skew-polynomial ring, we have the following theorem regarding circu-
lants, which summarizes some of our work in [5].

Theorem 2. Let xn − a = hg, where g has constant term 1.
(a) If g has degree n − k, then the first k rows of Ma(g) form a basis of the rowspace of Ma(g),

which in turn is the code generated by g.

(b) Ma(fg) = Ma(f)Ma(g) for all f ∈ R.

(c) Ma(g)T = Ma−1(g#) for some polynomial g# (whose definition we omit here).

(d) Ma(g)Ma−1(ĥ)T = 0, and the ranks of the two matrices add up to n.

From this, we immediately recover the results from [2] presented in Theorem 1. It is worth
pointing out that Theorem 2(c) is not true if g is not a right divisor of xn − a; the transpose of a
circulant is not generally another circulant.

5 Generating Idempotents in a-constacyclic Codes

Recall that in the classical cyclic case, finding generating idempotents is easier than factorizing xn−a
to find generator polynomials if n is large. Finding factorizations of xn− a in the skew-polynomial
ring R is even harder, as R is not a unique factorization domain. To this end, we want to generalize
results from cyclic codes to the skew-constacyclic case.

Since R/•(xn − a) is in general a module and not a ring, we must modify our definition of an
idempotent. We now say that a skew-polynomial e ∈ F[x; θ] is an idempotent modulo •(xn − a)
if e2 − e ∈ •(xn − a), and that e is a generating idempotent of •(g) if, additionally, •(g) = •(e).

In [6], Gao, Shen, and Fu demonstrate a method for finding idempotents modulo •(xn − a)
when a = 1 and n is a multiple of |θ|. In my dissertation, I improve their method to work for any
constant a ∈ F∗:

Theorem 3. Let xn − a be central, and let g be a central right divisor of xn − a generating an a-
constacyclic code C. Then C has a unique generating idempotent of degree less than n.

When xn−a is not central, finding idempotents becomes significantly more complicated. In the
cyclic case, the restriction to gcd(n, q) = 1 is necessary. In the θ-constacyclic case, we conjecture,
based on an abundance of examples, that obtaining generating idempotents will require similar
restrictions.

Conjecture 4. Suppose gcd(n, q) = gcd(n, |θ|) = 1 and xn − a = hg. Suppose further that g has
constant term 1. Then:
(a) The greatest common right divisor of h and g is 1.

(b) Let 1 = uh+ vg with deg(u) < deg(g) and deg(v) < deg(h). Then vg = gv.

Note that performing the rescaling of our generator polynomial g so that it has constant term 1 is
not difficult, but unlike in Theorem 2, here it is a necessary component of our conjecture. Assuming
Conjecture 4, we can produce generating idempotents for skew-constacyclic codes:

Theorem 5. Let C be an a-constacyclic code generated by g, where xn − a = hg with 1 = uh+ vg
and vg = gv for some u, v ∈ R. Then vg is a generating idempotent of C.

This leads to a broad class of codes with generating idempotents. These idempotents in turn
can be used to generalize well-known results of idempotents of sums and intersections of classical
cyclic codes.

N. Fogarty, 3

6 Future Goals

I naturally hope to resolve Conjecture 4, which would imply a large class of codes with generating
idempotents. In contrast to the cyclic case, a-constacyclic codes can have multiple generating
idempotents. Under what circumstances does a a-constacyclic code have a unique generating
idempotent?

There are some clear connections between a-constacyclic codes and generalize Vandermonde
matrices. Leroy and Lam defined a generalized Vandermonde for this purpose in [8]. In [6], Gao,
Shen, and Fu gave a lower bound on the Hamming distance of an a-constacyclic code C by using
the generalized Vandermonde matrix. They required, as in the cyclic case, that the generator
polynomial of C has (right) roots that are consecutive powers of a primitive element of a particular
extension of F. Boulagouaz and Leroy [3] examined how the generator polynomial g of an a-
constacyclic code behaves when it is a Wedderburn polynomial. The right roots of g can then
be examined via a Vandermonde matrix. In [9], Liu, Manganiello, and Kschischang used the
generalized Vandermonde matrix to find minimal degree skew-polynomials that vanish over a set
of field elements. We should be able to generalize and combine the results so far. This could more
easily allow us to obtain information on the distances of a-constacyclic codes.

7 Undergraduate Research

I am excited to share my research area with undergraduate students. My own research opportunities
as an undergraduate — an independent study, a Research Experience for Undergraduates, and a
National Security Agency internship — helped inspire me to pursue a career in mathematics. I
want to inspire future mathematicians in the same way by working with them on questions from
my own area. Coding theory lends itself easily to undergraduate research. The concept of a vector
space over a finite field should be clear after an undergraduate course in abstract algebra; the
leap from there to coding theory is minimal. And as an area with obvious real world applications,
coding theory has appeal to both pure and applied mathematicians. My own current research
requires a grasp of noncommutative rings, which could lend itself to an interesting independent
study for an upper-division student with a strong interest in algebra. In particular, much of my
own work has involved the use of the computer algebra system Maple to formulate conjectures and
generate examples. This can provide an opportunity for students interested in programming and
contributing to research with an abstract approach.

In addition, one can take a more concrete view of codes by considering them through the lens of
graph theory. I am interested in taking this perspective as well and working with undergraduates
to visualize codes. There are a number of ways of applying graph theory to coding theory.

For example, a Hamming graph Hm(n, d) is a graph with vertices corresponding to vectors
in (Z/mZ)n. Two vertices u, v are connected by an edge if and only if dist(u, v) ≥ d. The Hamming
graph encapsulates what it means for codewords to be sufficiently far apart. Thus finding the largest
code (potentially non-linear) of a particular distance d (with n and m fixed) is equivalent to finding
the largest complete subgraph of Hm(n, d).

We can also view a code as a trellis, which is a specific type of directed graph. Vertices of a
trellis are partitioned into n + 1 sets with an ordering, and edges are directed from the ith set to
the (i + 1)st set. Each edge is labelled with a field element. The code represented by the trellis
consists exactly of the vectors that can be read across any path of length n.

Another class of codes, low-density parity-check codes, are constructed via bipartite graphs.
One partite set of vertices corresponds to entries in a potential codeword, while the other partite
set serves as a collection of parity checks to determine if the codeword is valid.

N. Fogarty, 4

We see that different types of codes and different questions lead to their own graphical interpre-
tations. Each of these perspectives is a readily available approach to coding theory for interested
undergraduates. Combining the idea of a graphical representation of a code with my own area of
research, we can ask: is there a natural way to interpret or view a skew-constacyclic code as a
graph?

References

[1] D. Boucher, W. Geiselmann, and F. Ulmer. Skew-cyclic codes. Applicable Algebra in Engi-
neering, Communication and Computing, 18(4):379–389, 2007.

[2] D. Boucher and F. Ulmer. A note on the dual codes of module skew codes. In Cryptography and
coding, volume 7089 of Lecture Notes in Comput. Sci., pages 230–243. Springer, Heidelberg,
2011.

[3] M. Boulagouaz and A. Leroy. (σ, δ)-codes. Advances in Mathematics of Communications,
7(4):463–474, 2013.

[4] L. Chaussade, P. Loidreau, and F. Ulmer. Skew codes of prescribed distance or rank. Designs,
Codes and Cryptography, 50(3):267–284, 2009.

[5] N. Fogarty and H. Gluesing-Luerssen. A circulant approach to skew-constacyclic codes. Finite
Fields and Their Applications, 35(0):92 – 114, 2015.

[6] J. Gao, L. Shen, and F. Fu. Skew generalized quasi-cyclic codes over finite fields.
arXiv:1309.1621, 2013. Preprint.

[7] W. C. Huffman and V. Pless. Fundamentals of error-correcting codes. Cambridge Univ. Press,
2003.

[8] T. Lam and A. Leroy. Vandermonde and wronskian matrices over division rings. Journal of
Algebra, 119(2):308 – 336, 1988.

[9] S. Liu, F. Manganiello, and F. Kschischang. Kötter interpolation in skew polynomial rings.
Designs, Codes, and Cryptography, 72(3):593–608, 2014.

[10] O. Ore. Theory of non-commutative polynomials. Annals of Mathematics, 34(3):pp. 480–508,
1933.

[11] E. Prange. Cyclic error-correcting codes in two symbols. Electronics Research Directorate,
Air Force Cambridge Research Center, September 1957. No. AFCRC-TN-57-103. ASTIA
Document No. AD133749.

N. Fogarty, 5

