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Subspace Codes for Random Network Coding

1 Classical Coding Theory
At its most basic, algebraic coding theory studies the balance between adding mathematical re-
dundancy to data versus the cost of sending the redundancy. The basic problem to be solved is
that there is a sender trying to send data through a noisy channel to a receiver, but the noise may
cause errors to occur during the transmission. Thus to fix this problem we encode the data into
a codeword, typically a vector over a finite alphabet, and send the codeword across the channel.
Thus, if the received word does not exactly match any of the expected codewords, it is decoded
to the closest (by some appropriate metric on the vectors) codeword. This way we can detect and
correct errors in transmission. However, to accomplish this task, we must have large collections
of vectors which are far apart by an appropriate distance. Additionally, we need to be able to
efficiently decode the received word to the closest codeword.

2 Random Network Coding Theory
In random network coding, we have a network, that is a directed graph with sources and sinks,
across which we want to send data. As the data moves through the network it is collected at
nodes, which compile the incoming data and send it on as a linear combination. Thus the only
information that needs to be maintained across the network is the linear combinations of the
data. However, this causes errors and erasures to propagate greatly, since each linear combination
after the error or erasure continues to be corrupted. In order to correct these issues Kötter and
Kschischang [7] introduced an algebraic approach for error correcting in random network coding,
by using subspaces themselves as the codewords rather than vectors. Using subspaces makes sense,
since a subspace is exactly the object which stores linear combinations, the data sent through the
network. Additionally, subspace codes are the q-analog of packing designs, so they have also been
studied from a combinatorial perspective and some of these codes have be constructed as packing
designs, see [1].

3 Introduction to Subspace Codes
Let Fq be a finite field of size q. Let Fn

q be the space of row vectors with entries in Fq. Define the
subspace distance as

dS(U ,V) := dim(U) + dim(V)− 2 dim(U ∩ V).

Importantly, the subspace distance is a metric and dS(U ,V) = 0 if and only if U = V, which shows
us why we subtract twice the dimension of the intersection. The idea of the subspace distance is
that two subspaces are close together if they share many of the same linear combinations, which
makes sense with our goals.

We say that a nonempty collection, C, of subspaces of Fn
q is a (n,N, d)q subspace code, if N = |C|

and dS(U ,V) ≥ d for all U ,V ∈ C. In this case, we denote the subspace distance of a code by,
dS(C) = d. Many times we restrict ourselves to the Grassmannian, that is, the set of k dimensional
subspace of Fn

q , which we denote Gq(n, k). If C ⊂ Gq(n, k) then we say that C is a (n,N, d, k)q
constant dimension subspace code. If C is of constant dimension k then dS(U ,V) = 2(k−dim(U∩V)),
for all U ,V ∈ C. Thus the distance is even for a constant dimension code. We should note that
0 < dS(C) ≤ 2k, and dS(C) = 2k only if all of the codewords intersect trivially.

A constant dimension code, C, with distance 2k is called a partial spread code. A partial spread
code for which every 1 dimensional subspace is contained in exactly one subspace of the code, is
called a spread code. Spread codes, are the q-analogues of combinatorial spreads and have been
well studied in this context. It is well known that spread codes only occur in the case where k|n



Carolyn Troha Research Statement 2 of 4

and have cardinality qn−1
qk−1

. Spread codes are optimal since they achieve the Singleton bound and

can be efficiently decoded, see [2].
Another major class of subspace codes are derived from a type of matrix codes called rank

metric codes. We define the rank metric for two matrices X,Y ∈ Fm×n
q as

dR(X,Y ) := rank (X − Y ).

Like the subspace distance, the rank distance is also a metric and it is easy to see that dR(X,Y ) = 0
if and only if X = Y . A linear rank metric code is a subspace C ⊂ Fm×n

q endowed with the
rank metric. There are many ways to utilize these matrix codes for subspace codes, but the
easiest way is to lift the matrices to subspaces. We define the lifting of a matrix X ∈ Fk×n

q as
Λ(X) = rowspace (Ik×k X). Notice that dim Λ(X) = k for all X, so we can construct a constant
dimension subspace code C := {Λ(X) | X ∈ CR} from any rank metric code CR. It is straight
forward to show that for a lifted rank metric code dS(C) = 2dR(CR). This construction was
originated by Kötter and Kschischang in [7] and has been expanded upon by Etzion and Silberstein
in [3] as well as others.

There are other known constructions and my research focuses on looking at new constructions
as well as refining some currently known constructions.

4 Cyclic Orbit Codes
One of the main constructions I have studied is that of irreducible cyclic orbit codes, which were
introduced by Rosenthal and Trautmann in 2013, [8]. Cyclic subspace codes are subspace codes
which are closed under the cyclic shift operation, and were introduced by Etzion and Vardy in [4],
but were also constructed by Kohnert and Kurz in [6]. They are very large codes and it can be
shown that they are unions of irreducible cyclic orbit codes. In order to gain more knowledge of
these cyclic subspace codes, I looked into a way to find the cardinality and distance of irreducible
cyclic orbit codes, the building blocks of cyclic subspace codes.

For this section of this statement, we will utilize an Fq-linear isomorphism between Fn
q and Fqn .

This means we will think that a subspace U is a subspace of Fqn , considerd as a vector space over
Fq.

Definition 1. Fix a primitive element α ∈ Fqn , that is, an element which is a generator of the
multiplicative group of the field, F∗

qn . Let U be a k-dimensional subspace of Fqn . The (primitive)
cyclic orbit code generated by U is defined as the set

Orb(U) := {Uαi | i = 0, 1, . . . , qn − 1},

where Uαi := {uαi | u ∈ U}.

Note that uαi is the standard multiplication in the field Fqn . Furthermore, since dim
(
Uαi

)
=

dim (U), the code Orb(U) is a constant dimension code. We will assume that Orb(U) ⊂ Gq(n, k)
for the rest of this section.

If we consider the subfield Fqk as a Fq vector space of Fqn , then we can show that Orb(Fqk) is
a spread code. This fact shows that cyclic orbit codes are a natural generalization of spread codes.
In my research, I wanted to find properties of a subspace U , which would contribute to cardinality
and distance of the code Orb(U). Since Fqk generates a spread code, I investigated how the other
subfields of Fqn relate to the cardinality and distance of Orb(U). Recall, that any subfield of Fqn

is of the form Fqr , where r|n. To continue we will need the idea of friends of a subspace.
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Definition 2. Let U be a subspace of Fqn . A subfield Fqr of Fqn is called a friend of U is U is
a vector space over Fqr with scalar multiplication being the multiplication in the field Fqn . The
largest friend (with respect to cardinality) is called the best friend of U .

Knowing the best friend of a subspace, U , immediately tells us the cardinality of the code
Orb(U) as well as some information about the distance of the code.

Proposition 3. Let Fqr be the best friend of U . Then

|Orb(U)| = qn − 1

qr − 1
and 2r ≤ dS(Orb(U)) =≤ 2k.

A proof of this proposition can be found in [5]. In fact, we can get better results about the
distance of an cyclic orbit code. It turns out that dS(Orb(U)) = 2(k−sr), where s is the maximum
dimension of U ∩Uαi as a vector space over the best friend Fqr , for i = 1, . . . , q

n−1
qr−1 . We have proved

a construction of U that gives a cyclic orbit code of minimum possible distance 2r, and have other
conditions on U that give poor distance. This helps aviod poor choices for U . Additionally, we
refine a result from [8], which utilizes multisets, as well as the best friend, to compute the distance
of these codes.

5 A Linkage Construction
As mentioned in section 2, there are many types of constructions for subspace codes. However,
each of these constructions requires an entirely new code to be build for each set of parameters. For
many of these constructions this is a difficult process that is done in large part by careful computer
search. The following construction is a recursive construction, which links two different subspace
codes to create a larger (in terms of cardinality) and longer (in terns of n) subspace code. This
is useful because, once shorter codes have been developed, we can quickly and easily create longer
codes.

Theorem 4. For i = 1, 2 let Ci = {rowspaceUi,l | l ∈ [Ni]} be a (ni, Ni, di, k)q-code. Thus Ui,l

are matrices of rank k in Fk×ni
q for all i, l. Let CR be a k × n2 linear rank metric code, such that

|CR| := NR with rank distance dR(CR) = dR. Define the subspace code C̃ of length n := n1 + n2 as
C̃ = C̃1 ∪ C̃2 ∪ C̃3, where

C̃1 = {rowspace (U1,l, 0k×n2) | l ∈ [N1]},

C̃2 = {rowspace (0k×n1 , U2,l, ) | l ∈ [N2]},

C̃3 = {rowspace (U1,l,M) | l ∈ [N1],M ∈ CR\{0}}.

Then C̃ is a (n,N, d, k)q code, where N = N2 +N1NR and d = min{d1, d2, 2dR}.

While this construction, which I will refer to as the linkage construction, does not exceed any
known lower bounds for cardinality, it comes close to many of these bounds and beats many codes.
Additionally, the linkage construction gives a systematic and recursive approach to finding large
codes, which is a selling point because all the codes which beat the linkage construction rely heavily
on computer search to generate the code for each set of parameters. I am currently looking into
an efficient decoding algorithm for the linkage construction and in the case where we assume CR is
also a subspace code, we have an efficient decoding algorithm, as long as the underlying codes have
an efficient decoding algorithm.

This construction works particularly nicely in a special case which uses partial spread codes.
However, to do this, we must refine the linkage construction to a special case. Let C1 and C2 be



Carolyn Troha Research Statement 4 of 4

partial spreads of maximum cardinality, V ∈ Fk×n2
q be a full rank matrix, M ∈ GLn2(Fq) be the

companion matrix of a primitive polynomial of degree n2, and CR = {VM i | 0 ≤ i ≤ qn − 2} in
theorem 4. The resulting code C̃ is then a partial spread code. Although it is still an open problem
to find the maximum cardinality of a partial spread in most cases, it is know in the case q = 2,
k = 3. For this case, we have shown that the refined linkage construction gives another construction
for maximum partial spreads over F2 with dimension 3, for all n. A preliminary form of the linkage
construction which utilizes the ideas of primitive cyclic orbit codes can be found in [5].

6 Undergraduate Research
As an undergraduate I was able to participate in two different undergraduate research projects, one
of which was funded by the Center for Undergraduate Research in Mathematics. These opportuni-
ties shaped my mathematical career and have inspired me to do research with undergraduates. One
of the reasons I research in coding theory is because it is easily accessible to undergraduates. Not
only it is an active research area but also can easily be explained to people with just basic math
skills. My research only requires basic knowledge of vector spaces, linear algebra and finite fields
to get started, which enables many undergraduates to research in coding theory early on in their
mathematical career. Since it has real world applications, but also can be viewed from a pure math
standpoint, coding theory appeals to mathematicians of many different inclinations. I would love to
work with students on new constructions of subspace codes or on optimizing known constructions.
Working with constructions always requires the use of programming to compute examples of such
codes, which is another way to give students a project which they can get started with quickly. I
certainly see my research career being focused around undergraduate involvement.
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