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2. Cosimplicial spaces and Tot

2.1. Cosimplicial objects
Recall the finite ordinal category ∆. Its objects are the finite totally ordered sets n =
{0, 1, . . . , n}, and morphisms are the order-preserving maps. For each 0 ≤ i ≤ n, there are
maps

di : n− 1→ n (cofaces)
and

si : n + 1→ n (codegeneracies),
where di is the injection that omits the element i and si is the surjection such that si(i) =
si(i + 1) = i.

Definition 2.1. Given a category C , a cosimplicial object in C is a functor ∆ → C .
Cosimplicial objects and natural transformations between them form a category, denoted
cC .

Exercise 2.2. If sC denotes the category of simplicial objects in C , there is a canonical
isomorphism cC ∼= (c(C op))op.

Example 2.3. The standard n-simplices ∆[n] = Hom∆(−,n), as n varies, constitute a
cosimplicial simplicial set.

Example 2.4. The geometric n-simplices ∆n = {(t0, . . . , tn) ∈ Rn+1 |
∑

i ti = 1}, as n
varies, constitute a cosimplicial space.

Example 2.5. Given any X ∈ C , one can form the constant, or discrete, cosimplicial
object X• given by Xn = X for all n and by setting all cofaces and codegeneracies to be
the identity map of X.

Example 2.6. (Vague) Suppose we have some sort of “simplicial resolution” X• → C of
some C ∈ C . Then HomC (X•, D) forms a cosimplicial set, and if C is enriched over D , the
above yields a cosimplicial object in D .
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2 Guillou

Example 2.7. Let X•, Y• ∈ sSet. Then we get a cosimplicial simplicial set Hom(X•, Y•)
defined by

Hom(X•, Y•)n = Hom(Xk, Y•).

Proposition 2.8. Suppose that C is a closed symmetric monoidal category will all small
limits. Then cC is enriched and bitensored over C ; in other words, for each X•, Y • ∈ cC
and C ∈ C , we have objects C (X•, Y •), X•⊗C, (Y •)C together with natural isomorphisms

HomC (C,C (X•, Y •)) ∼= HomcC (X• ⊗ C, Y •) ∼= HomcC (X•, (Y •)C).

Proof. We define the objects by

(X• ⊗ C)n = Xn ⊗ C,(
(Y •)C

)n = C (C, Y n),

and

C (X•, Y •) = eq
(∏

n

C (Xn, Y n) ⇒
∏

m→n

C (Xm, Y n)
)

.

We leave the claimed isomorphisms to the reader. �

2.2. The homotopy theory of cosimplicial spaces
We will allow “spaces” to mean either topological spaces or simplicial sets, and we will write
Spc for the category of spaces.

Recall that Spc is cartesian closed; given X, Y ∈ Spc, we will as usual write Map(X, Y ) ∈
Spc for the internal hom functor. Moreover, Spc has a model structure which is compatible
with this monoidal structure. The latter means that given a cofibration A

i−→ B and a
fibration X

p−→ Y , the induced map

Map(B,X)→ Map(A,X)×Map(A,Y ) Map(B, Y )

is a fibration which is a weak equivalence if either i or p is a weak equivalence. In this
section, we will describe how cSpc inherits model structure from Spc. Before we are ready
to describe this model structure, we need a few preliminaries.

Definition 2.9. Given X• ∈ cSpc, we define

π0(X•) = eq(X0

d0
//

d1
//
X1)

in Spc. This is sometimes called the maximal augmentation of X•.

Definition 2.10. For X• ∈ cSpc and n ≥ −1, we define the nth matching space MnX•

by

MnX• = lim
n+1�k
k<n+1

Xk ∼= eq
( n∏

i=0

Xn ⇒
∏

0≤i<j≤n

Xn−1

)
,

where the two maps are given on the factor i < j by the composites
n∏

i=0

Xn pj−→ Xn si

−→ Xn−1 and
n∏

i=0

Xn pi−→ Xn sj−1

−−−→ Xn−1.

Note that by the definition of a cosimplicial object, there is a canonical map Xn+1 →
MnX• given by the codegeneracies si : Xn+1 → Xn.
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Remark 2.11. The composite Xn di

−→ Xn+1 →MnX is given by

(di−1s0, . . . , di−1si−2, id, id, disi, . . . , disn−1), 1 ≤ i ≤ n,

(id, d0s0, . . . , d0sn−1), i = 0,

and
(dns0, . . . , dnsn−1, id), i = n + 1.

The above formulae allow us to define coface maps di : Xn → MnX and codegeneracies
si : MnX → Xn without reference to Xn+1.

In fact, given an n-truncated cosimplicial object {Xk}k≤n, the above allows us to form
an n + 1-truncated cosimplicial object ρnX• which is Xk in codegree k ≤ n and MnX in
codegree n + 1. Moreover, the functor ρn : cnC → cn+1C from n-truncated cosimplicial
objects to n + 1-truncated cosimplicial objects is right adjoint to the n-truncation functor
τ≤n : cn+1C → cnC , so that we have

HomcnC (τ≤nX•, Y •) ∼= Homcn+1C (X•, ρnY •).

Example 2.12. By definition, M−1X• = ∗, and M0X• = X0.

Example 2.13. M1X• = X1 ×X0 X1, where the two maps X1 → X0 are s0 and s1.
Taking X• = ∆•, we get M1∆• = ∆1 ×∆1. Tracing through the definitions, we see that
the canoncial map ∆2 →M1∆• is

• •

•
���������

� � //

• •

• •
���������

���������

Definition 2.14. We say that a map f• : X• → Y • in cSpc is a
• weak equivalence if each fn : Xn → Y n is a weak equivalence in Spc for n ≥ 0
• cofibration if each fn : Xn → Y n is a cofibration for n ≥ 0 and f0 induces an

isomorphism π0(X•) ∼= π0(Y •)
• fibration if each

Xn+1 → Y n+1 ×MnY • MnX•

is a fibration in Spc for n ≥ −1.

Remark 2.15. Taking Spc = sSet, we see that X• is cofibrant if and only if the maximal
augmention is empty. In particular, this means that if K is any simplicial set, then the
constant cosimplicial space on K is cofibrant if and only if K = ∅.

On the other hand, the constant cosimplicial space on K is fibrant if and only if K is a
fibrant space.

Example 2.16. The cosimplicial space ∆• is cofibrant, but we see by Example 2.13 above
that it is not fibrant.

Theorem 2.17. With the above definitions, cSpc admits the structure of a proper, cofi-
brantly generated Spc-model category.

2.3. Tot(X)
Definition 2.18. Recall the cosimplicial object ∆• ∈ cSpc from above. Given any X• ∈
cSpc, we define the total space Tot(X) by

Tot(X) = Spc(∆•, X•).
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One should think of the above construction as dual to the realization of a simplicial space.

Example 2.19. Recall from example 2.7 that given K•, L• ∈ sSet, we have a cosimplicial
simplicial set Hom(K•, L•). We claim that

Tot(Hom(K•, L•)) ∼= Map(K•, L•).

This follows from the identification

K• ∼= colim
∆

∆• ×K• ∼= coeq
( ∐

m→n

∆m ×Kn ⇒
∐
n

∆n ×Kn

)
.

Indeed, we then have

Tot(Hom(K•, L•)) = eq
(∏

n

Map(∆n,Hom(Kn, L•)) ⇒
∏

m→n

Map(∆m,Hom(Kn, L•))
)

∼= eq
(∏

n

Map(∆n ×Kn, L•) ⇒
∏

m→n

Map(∆m ×Kn, L•)
)

∼= Map(K•, L•).

For any n ≥ 0, we have a cosimplicial space skn ∆•, given by

(skn ∆•)m = skn(∆m)

(if Spc = Top, we should probably define skn(∆m) = | skn ∆[m]|). Moreover, we have
natural inclusions skn ∆• ↪→ skn+1 ∆•, which are cofibrations (note that the maximal aug-
mentations are empty).

Definition 2.20. We will write Totn(X•) = Spc(skn ∆•, X•).

Remark 2.21. It is not difficult to see that Tot0(X•) ∼= X0. This follows from the fact
that everything in sk0 ∆• is in the image of the coface maps, so that maps sk0 ∆• → X• are
determined in codegree 0.

The above discussion implies that for each fibrant X• we have a tower of fibrations

· · · → Totn(X•)→ Totn−1(X•)→ · · · → Tot0(X•) ∼= X0

with Tot(X•) ∼= lim←−
n

Totn(X•).

3. The homotopy spectral sequence of a cosimplicial space

The goal of this section will be to develop the homotopy spectral sequence of a cosimplicial
space X•.

3.1. The homotopy spectral sequence for a tower of fibrations
Recall that given a tower of pointed fibrations

· · · → Ys
ps−→ Ys−1

ps−1−−−→ Ys−2 → . . .

there is a second octant spectral sequence

Es,t
1
∼= πt−s(Fs)⇒ πt−s(Y ),

where Y = lim←−Ys and Fs
is−→ Ys

ps−→ Ys−1 is the fiber. This spectral sequence arises from the
exact couple
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. . . ps∗ // π∗(Ys)
∂

||x
x

x
x

x

ps−1∗// π∗(Ys−1)
∂

yys s
s

s
s

ps−2∗ // . . .

∂

zzv
v

v
v

v

π∗(Fs)

is∗

OO

π∗(Fs−1)

is−1∗

OO

This exact couple is not an exact couple in abelian groups, since π1(Z) is not always
abelian, and π0(Z) is only a pointed set. As a result, we have that in general Es,s+1

r is only
a (not necessarily abelian) group and Es,s

r is only a pointed set.
In fact, the usual definition of Es,s+1

r+1 as ker(dr)/ im(dr) works once one knows that
im(dr) < ker(dr) is normal (in fact central).

For Es,s
r+1, one first shows that Es−r,s−r+1

r acts on Es,s
r via dr, but Es,s

r+1 is not defined
to be the set of orbits Es,s

r /dr(E
s−r,s−r+1
r ). Rather, one defines Es,s

r+1 to be the quotient of
“what would have been the cycles under dr”. To be precise, define Zs,s

r ⊆ Es,s
r to be the

inverse image under i∗ : π0(Fs) → π0(Ys) of im(π0(Ys+r) → π0(Ys)) ⊆ π0(Ys). Then one
shows that the action of Es−r,s−r+1

r on Es,s
r preserves Zs,s

r , and one defines

Es,s
r+1 = Zs,s

r /dr(Es−r,s−r+1
r ).

Due to these, for now, mysterious choices of Es,s
r+1, we say that the spectral sequence is

fringed rather than edged. Note that if π0(Ys+1) → π0(Ys) is surjective for each s, the
fringing disappears. One reason for fringing the spectral sequence is that it makes the
following proposition true at the level of π0.

Proposition 3.1 (BK, IX.4.1). For each r ≥ 0 there is a r-th derived homotopy se-
quence

· · · → πt−s−1Y
(r)
s−r−1 → Es,t

r+1 → πt−sY
(r)
s → πt−sY

(r)
s−1 → Es+r,t+r−1

r+1 → πt−s−1Y
(r)
s+r → . . . ,

where πiY
(r)
n = im(πiYn+r → πiYn).

3.2. Convergence
Now we will address the question of what the above spectral sequence computes.

Recall that for i ≥ 0 there is a natural short exact sequence

∗ → lim←−
1πi+1Yn → πiY → lim←−πiYn → ∗.

Proposition 3.2 (Connectivity Lemma). Let k ≥ 0 and r ≥ 1 such that Es,t
r = ∗ for

k ≥ t− s ≥ 0. Then

lim←−πiYn = ∗ = lim←−
1 πi+1Yn, 0 ≤ i ≤ k.

Thus, Y is k-connected.

Definition 3.3. Note that if r > s then Es,t
r cannot be the target of any nontrivial differ-

ential, so that Es,t
r+1 ⊆ Es,t

r . We say that {Es,t
r } converges completely to πiY (i ≥ 1)

if
lim←−

1Es,s+i
r = ∗, s ≥ 0.

Lemma 3.4 (BK, IX.5.4, Complete Convergence Lemma). If {Es,t
r } converges completely

to πiY then
lim←−

1πiYs = ∗ and Es,s+i
r ⇒ πiY.
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3.3. Specializing to the tower of fibrations for Tot(X•)
Assume that X• is a fibrant pointed cosimplicial space. Then each Totn(X•) acquires a
basepoint, the constant map to the basepoint of X•. In order to apply the above machinery
from the previous section to our tower of fibrations

· · · → Totn(X•)→ Totn−1(X•)→ . . . ,

we will first identify the fiber of Totn(X•)→ Totn−1(X•).

Lemma 3.5. The fiber Fn of Totn(X•)→ Totn−1(X•) is Ωn(NnX•), where

NnX• = ker
(

Xn (s0,...,sn−1)−−−−−−−→
n−1∏
i=0

Xn−1

)
= Xn ∩ ker s0 ∩ · · · ∩ ker sn−1.

Sketch. We are interested in the space Fn = Spc(skn ∆•/ skn−1 ∆•, X•). Now the cosimpli-
cial space skn ∆•/ skn−1 ∆• is a point in codegree less than n and the n-sphere Sn = ∆n/∂∆n

in codegree n. Moreover, everything in codegree bigger than n is in the image of a coface
map since this is true for skn ∆• (for instance, skn ∆n+1 = ∂∆n+1 is the union of the cofaces
di(∆n)). It follows that maps of cosimplicial spaces

f : skn ∆•/ skn−1 ∆• → X•

correspond to maps of spaces fn : Sn → Xn such that si ◦ fn = ∗ for all i. �

The homotopy spectral sequence of the pointed cosimplical space X• is the spectral
sequence for the tower of fibrations Tot∗(X•). The lemma allows us to identify

Es,t
1 = πt−sFs

∼= πtN
sX•.

The reason for the choice of notation N sX• will be made apparent in a moment.
For a cosimplicial pointed set Z•, we define N sZ• as above by the formula

N sZ• =
s−1⋂
i=0

ker
(
si : Zs → Zs−1

)
.

Note that if G• is a cosimplicial abelian group, then the cochain complex NG•, with differ-
ential given by

∑
(−1)idi, is the analogue of the normalized chain complex associated to a

simplicial abelian group. Moreover, as in the simplicial case we have

Hn(N∗G,
∑

(−1)idi) ∼= Hn(G∗,
∑

(−1)idi).

Lemma 3.6. We have isomorphisms

πtN
sX• ∼= N sπtX

•, t ≥ s ≥ 0.

Definition 3.7. (1) For a cosimplicial abelian group A•, we define cohomotopy groups
πsA by

πsA = Hs
(
A,

∑
(−1)idi

)
, s ≥ 0.

(2) In the case of a not necessarily abelian cosimplicial group, we can nevertheless still define
π0 and π1. The group π0G• is defined as

π0(G•) = eq(G0

d0
//

d1
//
G1).

To define the pointed set π1G•, first set Z1G• = {g ∈ G1 | d2(g)(d1(g))−1d0(g) = e}. We
define an action of G0 on Z1G• by g · z = d0(g)zd1(g)−1. Finally, set

π1G• = Z1G•/G0.
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(3) For a cosimplicial set X•, as before we define

π0(X•) = eq(G0

d0
//

d1
//
X1).

Proposition 3.8 (GJ, VIII.1.15). The differential d1 : N sπtX
• → N s+1πtX

• is
∑

(−1)idi,
and we have

Es,t
2
∼= πsN•πtX

• ∼= πsπtX
•.

Note that if the spectral sequence were not fringed, then we would not have the nice
formula Es,s

2 = πsπsX
•.

3.4. An example
Returning to Example 2.19, recall that if K•, L• ∈ sSet we have a cosimplicial simplicial
set Hom(K•, L•) and that

Tot(Hom(K•, L•)) ∼= Map(K•, L•).

Moreover, the same argument that gave the above identification yields an identification

Totn(Hom(K•, L•)) = Spc(skn ∆n,Hom(K•, L•)) ∼= Map(skn K•, L•).

There is also the pointed variant in which one begins with K•, L• ∈ sSet∗ and forms the
pointed cosimplicial simplicial set of pointed maps Hom∗(K•, L•); one then has as above

Tot(Hom∗(K•, L•)) ∼= Map∗(K•, L•)

and
Totn(Hom∗(K•, L•)) ∼= Map∗(skn K•, L•).

We will write Xn = Hom∗(Kn, L•). Then

Xn = Hom∗(Kn, L•) = (L•)K̃n ,

where K̃n = Kn − ∗.
In order for X• to be fibrant, one must assume that L• is a pointed Kan complex. Now

the above spectral sequence has

Es,t
1 = N sπtX

• = N sπt(LK̃•
• ) ∼= N s(πt(L•))K̃• ,

and Proposition 3.8 allows us to deduce that

Es,t
2
∼= H̃s(K•;πt(L•)).

Assuming, for example, that K• is finite-dimensional, so that skn K• ∼= K• for some n, we
get that the spectral sequence collapses and H̃s(K•, πt(L•))⇒ πt−s Map∗(K•, L•).

4. Obstruction Theory

Recall that in the previous section, we discussed the homotopy spectral sequence for the
tower of fibrations

· · · → Totn + 1(X•)→ Totn(X•)→ . . .

for a pointed (fibrant) cosimplicial space X•. The point is that the basepoint of X•

gives basepoints to each Totn(X•) and to Tot(X•) such that all of the maps Totn(X•) →
Totn−1(X•) preserve these basepoints. In this section, we will not assume given a basepoint
for X•. Note that the discussion of the previous sections does not a priori apply; even if one
chooses basepoints for each Xn, there is no reason for these choices to be compatible with
respect to the various cosimplicial structure maps. Following Bousfield, we will develop
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some obstruction theory to deal with the problem of succussively choosing basepoints in
Totn(X•) that lift to basepoints in Totn+1(X•).

4.1. n = 0
Let us start at the bottom, where everthing is simplest. Thus assume given some basepoint
x ∈ Tot0(X•) ∼= X0. We want to know if this point is in the image of Tot1(X•)→ Tot0(•).

The first step will be to get a more concrete understanding of the space Tot1(X•). Using
the explicit formula for Tot1(X•) from Proposition 2.8 and an argument as in Remark 2.21,
we get the formula

Tot1(X•) = eq
( 1∏

i=0

Map(∆i, X i) ⇒
∏

0≤i→j≤1

Map(∆i, Xj)
)

.

Explicitly, a point in Tot1(X•) consists of a point x ∈ X0 and a path γ in X1 such that
• γ(0) = d0(x),
• γ(1) = d1(x), and
• s0 ◦ γ is the constant loop at x.

Then the map Tot1(X•) → Tot0(X•) = X0 is given by (x, γ) 7→ x. Moreover, we see that
this map fits into a pullback square

Tot1(X•)

��

// Map(∆1, X1)

��
Tot0(X•) // Map(∂∆1, X1)×Map(∂∆1,X0) Map(∆1, X0),

where the bottom horizontal map is given by

x 7→ ((d0(x), d1(x)), (constant loop at x)

and the right vertical map is
γ 7→ (γ|∂∆1 , s0 ◦ γ).

Thus the question of the existence of a lift of x ∈ Tot0(X•) to Tot1(X•), is equivalent to
the existence of a path γ in X1 such that γ(0) = d0(x), γ(1) = d1(x), and s0 ◦ γ is constant
at x.

In fact, it turns out that the last condition is not needed. Suppose given a path γ in X1

such that γ(0) = d0(x) and γ(1) = d1(x). Then s0γ is a loop in X0 at x, and in general
there is no reason for it to be constant.

Letting Λ2
0 be the (2, 0)-horn (the simplicial set ∆2 without the 2-simplex i2 and the face

d0(i2)), define a map Λ2
0 → X1 by using the path γ on the face d1(i2) and d0(s0γ) on the

face d2(i2):
d1(x)

d0(x)

γ
77ooooooooooooo

d0(s0γ)
// d0(x)

Define a map ∆2 → X0 to be ∆2 s0

−→ ∆1 s0γ−−→ X0. Then one can check that the diagram
Λ2

0
//

��

X1

��
∆2 //

>>|
|

|
|

X0
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commutes. Moreover, we get a lifting σ : ∆2 → X1 since Λ2
0 ↪→ ∆2 is an acyclic cofibration

and X1 → X0 is a fibration (we are assuming that X• is a fibrant cosimplicial space which
means, in particular, that X1 → X0 is a fibration). Finally, define γ̃ = σ|d0(i2)

d1(x)

d0(x)

γ
77nnnnnnnnnnnnn

d0(s0γ)
// d0(x).

γ̃

OO

By construction, γ̃ is a path from d0(x) to d1(x) such that s0γ̃ is constant at x. We have
just proved

Proposition 4.1 (Lifting criterion). Let x ∈ Tot0(X•) ∼= X0. Then x lifts to Tot1(X•) if
and only if there is a path from d0(x) to d1(x), in other words, if and only if [d0(x)] = [d1(x)]
in π0(X1).

Note that another way to say that [d0(x)] = [d1(x)] in π0(X1) is that [x] ∈ π0π0(X•).
Although it does not make sense general, we will say that

“the element [d0(x)][d1(x)]−1 ∈ π0(X1) is the obstruction to the lifting of x
to Tot1(X•)”.

Moreover, thinking back to the spectral sequence from the previous section, this mythical
obstruction element lives in E1,0

1 .

4.2. n > 0
As it turns out, the results from the previous section generalize.

For instance, one can see that a point of Totn(X•) consists of (x0, . . . , xn), with xk :
∆k → Xk such that

• di(xk) = xk+1 ◦ di for 0 ≤ i ≤ k + 1 and 0 ≤ k ≤ n− 1 and
• sj(xk) = xk−1 ◦ sj for 0 ≤ j ≤ k − 1 and 1 ≤ k ≤ n.

The map Totn(X•)→ Totn−1(X•) is simply forgetting xn, and one has a pullback square
Totn(X•) //

��

Map(∆n, Xn)

��
Totn−1(X•) // Map(∂∆n, Xn)×Map(∂∆n,Mn−1X•) Map(∆n,Mn−1X•).

The result here is

Proposition 4.2 (Lifting criterion). Let x ∈ Totn−1(X•). Then x lifts to Totn(X•)
if and only if the induced map o(x) : ∂∆n → Xn represents the trivial element in
πn−1(Xn, d0 . . . d0(x0)).

We call o(x) the obstruction to lifting x. As in the previous section, we think of this
element as living in En+1,n

1 .

4.3. Uniqueness
Now suppose that x ∈ Totn−1(X•) has a lift y ∈ Totn(X•). One can then repeat the above
proceedure to determine whether y lifts to Totn+1(X•). However, the obstruction o(y) to
lifting y may very well depend on the choice of lift y. That is, bad choices of y might prevent
us from lifting x to Totn+2(X•).
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Fortunately, there is a nice answer to this problem. First, one shows that the element
o(y) ∈ πn(Xn+1, x0) is a cocycle, so that one may consider the corresponding class

[o(y)] ∈ πn+1πn(X•, x0).

Next, one shows that this class is independent of y!. Finally, Bousfield’s result is

Theorem 4.3. Suppose that x ∈ Totn−1(X•) lifts to y ∈ Totn(X•). Then
(1) if n = 1 and the fundamental groupoid πXm acts trivially on π1(Xm, z) for all

m ≥ 0, then the element [o(y)] ∈ π2π1(X•, x0) is trivial if and only if x extends to
Tot2(X•)

(2) if n > 1 then the element [o(y)] ∈ πn+1πn(X•, x0) is trivial if and only if x extends
to Totn+1(X•).

Corollary 4.4. Let x ∈ Tot0(X•) ∼= X0 lie in π0π0(X•). If the fundamental groupoid πXm

acts trivially on π1(Xm, z) for all m ≥ 0 and πn+1πn(X•, x) = 0 for n ≥ 1, then x lifts to
Tot(X•).

4.4. Application
We will very briefly sketch an application; some of the ideas introduced will be the subject
of Niles’ talk next time.

Fix a prime p. Let Fp : sSet → sSet be the free simplicial Fp-vector space functor. Let
Y be a space and let F•pY be the Bousfield-Kan resolution of Y given by (F•pY )n = Fn+1

p Y .
The functor Fp is a monad and so yields an augmented cosimplicial space with cofaces given
by

di = Fi
pηFn+1−i

p : (FpY )n → (FpY )n+1

and codegeneracies by
si = Fi

pεFn−i
p : (FpY )n+1 → (FpY )n.

Bousfield and Kan define the p-completion of Y to be Yp = Tot(F •
p Y ).

Given another space X, we can form the cosimplical space Map(X, F•pY ), where the
cosimplicial structure comes from F•p. We then have

Tot(Map(X, F•pY )) ∼= Map(X, Tot(F•pY )) ∼= Map(X, Yp).

For any space Z, we have a map

π0(Map(X, Z))→ HomK(H∗Z,H∗X),

where K is the category of unstable algebras over the mod p Steenrod algebra. This map is
an isomorphism if Z is a simplicial Fp-vector space and both X and Z have finite-dimensional
Hn for all n. In fact, choosing a basepoint f ∈ Map(X, Z) yields a similar isomorphism

πt(Map(X, Z), f)→ HomK(H∗Z,H∗(St)⊗H∗X)

under the same assumptions.

Proposition 4.5. Let X and Y be spaces of finite type (meaning that Hn is finite dimen-
sional for each n). Then a morphism ϕ : H∗Y → H∗X in K can be lifted to a map of spaces
X → Yp if

Rs+1 DerK(H∗Y, ΣsH∗X;ϕ) = πs+1 HomK(H∗F•pY, H∗(Ss ×X)) ∼= 0

for s ≥ 1.


