THE CALCULUS OF FUNCTORS

BERTRAND GUILLOU

1. The Calculus of Functions

Let $f : \mathbb{R} \to \mathbb{R}$ be a C^{∞} function. Given any $a \in \mathbb{R}$ (e.g. a = 0), we can approximate the function f by its Taylor series

$$f(x) \sim f(a) + f'(a)(x-a) + \frac{f^{(2)}(a)}{2}(x-a)^2 + \frac{f^{(3)}(a)}{3!}(x-a)^3 + \dots$$

For x "close enough" to a, the Taylor series will converge to f(x), provided that f(x) is "analytic". Letting $P_n(f)(x)$ denote the nth Taylor polynomial of f(x), another way to say this is that

$$f(x) = \lim_{n} P_n(f)(x).$$

2. The Calculus of Functors

Let $F: \mathscr{C} \longrightarrow \mathscr{D}$ be a homotopy functor between pointed model categories.

Notation. We will denote by \mathbf{Top}_* the category of based spaces and more generally by \mathbf{Top}_Y the category of spaces over and under a given space Y. The category of spectra will be denoted \mathbf{Sp} , and \mathbb{S} will denote the sphere spectrum.

A ring, or simplicial ring, will always mean either a brave new ring or a simplicial ring or a dg-ring. If R is a commutative ring in any of these senses, we will write \mathbf{Alg}_R and \mathbf{ComAlg}_R for the categories of *augmented* R-algebras and commutative R-algebras, respectively. \mathbf{Mod}_R will denote the category of (left) R-modules.

Example 1. Letting \mathscr{C} or \mathscr{D} be \mathbf{Top}_* or \mathbf{Sp} , we have functors

$$\begin{split} \mathrm{Id}_{\mathbf{Top}_*} &: \mathbf{Top}_* \longrightarrow \mathbf{Top}_*, \\ \Sigma^\infty &: \mathbf{Top}_* \longrightarrow \mathbf{Sp}, \\ \Omega^\infty &: \mathbf{Sp} \longrightarrow \mathbf{Top}_*, \end{split}$$

and

 $\mathrm{Id}_{\mathbf{Sp}}:\mathbf{Sp}\longrightarrow\mathbf{Sp}.$

It will turn out that all of these functors are "analytic" and that in fact, apart from Id_{Top_*} , they are all "degree 1".

Example 2. For the algebraic analogue of the previous example, we use the fact that the stabilization of \mathbf{ComAlg}_R is \mathbf{Mod}_R (see [BM]). We have functors

$$\begin{split} \mathrm{Id}_{\mathbf{ComAlg}} &: \mathbf{ComAlg}_R \longrightarrow \mathbf{ComAlg}_R, \\ & \mathbf{TAQ} : \mathbf{ComAlg}_R \longrightarrow \mathbf{Mod}_R, \\ & \mathcal{Z} : \mathbf{Mod}_R \longrightarrow \mathbf{ComAlg}_R, \\ & \mathrm{Id}_{\mathbf{Mod}} : \mathbf{Mod}_R \longrightarrow \mathbf{Mod}_R, \end{split}$$

Date: May 27, 2010.

where **TAQ** is Topological André-Quillen Homology and $\mathcal{Z}(M)$ is the square-zero extension $R \oplus M$ of R.

Example 3. One of the first examples studied by Goodwillie is Waldhausen's **A**-theory functor from (based) spaces to spectra, which can be defined as

$$\mathbf{A}(X) = \mathbb{K}(\Sigma^{\infty}(\Omega X)_{+}).$$

In particular,

$$\mathbf{A}(*) = \mathbb{K}(\Sigma^{\infty}(*_{+})) = \mathbb{K}(\mathbb{S}).$$

3. Degree n functors

We will define what it means for a functor to be "degree (at most) n". Well, actually today we only have time for n = 0 and n = 1. For any functor F, there is a universal degree n approximation $F \longrightarrow P_n(F)$. Furthermore, the degree n approximation of $P_{n+1}(F)$ is again $P_n(F)$, and there results a tower of polynomial approximations to F:

The analogue of the Taylor series is the homotopy limit of this tower

$$P_{\infty}(F) = \operatorname{holim}_{n} P_{n}(F).$$

3.1. Degree 0

Let's start with the notion of a degree 0 functor. This is easy: a degree 0 polynomial function is just a constant function, and we similarly define a functor to be degree 0 if it is constant.

While we're at it, we might as well describe the degree 0 approximation to a functor F: simply evaluate F at the basepoint in \mathscr{C} : $P_0(F)(X) = F(*)$. Since * is terminal in \mathscr{C} , any X will map to *, and applying F to this map provides the desired map

$$F(X) \longrightarrow F(*) =: P_0(F)(X).$$

A functor is said to be **reduced** if $P_0(F) = *$; that is, if F takes value $*_{\mathscr{D}}$ at $*_{\mathscr{C}}$. Note that the fiber of $F \longrightarrow P_0(F)$ defines a reduced functor.

3.2. Degree 1

Before discussing degree 1 functors in general, we will first discuss degree 1 functors that are reduced (these are usually called **linear** or **homogeneous of degree** 1). A linear function f is characterized by the fact that

$$f(x+y) = f(x) + f(y),$$

so one might ask for a functor that behaves similarly. But now one has a choice of how to interpret '+', and in fact the different choices lead to different flavors of Calculus. One could interpret the sum on both sides of the equation as a coproduct or as a product. One could also choose to interpret one as a coproduct and the other as a product.

The usual definition (dropping the assumption that the functor is reduced) is as follows:

Definition. A homotopy functor $F : \mathscr{C} \longrightarrow \mathscr{D}$ is said to be **degree** 1, or 1-excisive, if whenever

is a homotopy pushout diagram in \mathscr{C} , then

$$F(A) \longrightarrow F(B)$$

$$\downarrow \qquad \qquad \downarrow$$

$$F(C) \longrightarrow F(D)$$

is a homotopy pullback diagram in \mathscr{D} . More succinctly, F is degree 1 if it takes (homotopy) pushouts to (homotopy) pullbacks.

A particular case of a homotopy pushout diagram is, for any $X \in \mathscr{C}$, the diagram

Any reduced degree 1 functor must then produce a homotopy pullback diagram

In other words, we find that

$$F(X) \simeq \Omega F(\Sigma X).$$

For a general F, we have only a map

To produce a degree 1 approximation to F, we want to force these maps to become equivalences, and so we simply use the standard trick of passing to (homotopy) colimits over these maps. Letting $T_1(F)(X)$ denote the homotopy limit in the above diagram, we define the degree 1 approximation $P_1(F)$ by the formula

$$P_1(F)(X) = \underset{n}{\operatorname{hocolim}}(F(X) \to T_1(F)(X) \to T_1(T_1(F))(X) \to \dots).$$

The associated reduced degree 1 functor, denoted $D_1(F)(X)$ sits in a fiber sequence

$$D_1(F)(X) \longrightarrow P_1(F)(X) \longrightarrow P_0(F)(X)$$

In terms of Taylor polynomials of functions, $P_1(F)(X)$ plays the role of f(a) + f'(a)(x - a) and $D_1(F)(X)$ plays the role of f'(a)(x - a). In light of this, it is reasonable to ask what plays the role of the Taylor coefficient f'(a).

Example 4. Since **Sp** is *stable*, homotopy pushout squares coincide with homotopy pullback squares, so Id_{Sp} is a linear functor. Similarly, one can see that Σ^{∞} and Ω^{∞} are linear functors.

However, $\operatorname{Id}_{\operatorname{Top}_*}$ is certainly *not* a linear functor, as homotopy pushout squares in spaces are rarely homotopy pullback squares. According to the definition, $T_1(\operatorname{Id}_{\operatorname{Top}_*})(X) = \Omega \Sigma X$, so that

$$P_1(\mathrm{Id}_{\mathbf{Top}_*})(X) = \operatorname{hocolim}_n \Omega^n \Sigma^n X = \Omega^\infty \Sigma^\infty(X).$$

Example 5. The answer in the algebraic example is similar. Since \mathbf{Mod}_R is stable, all three functors involving this category are linear. The identity functor on \mathbf{ComAlg}_R is not linear, and it turns out that

$$P_1(\mathrm{Id}_{\mathbf{ComAlg}_B})(B) = \mathcal{Z} \circ \mathbf{TAQ}(B).$$