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1. The Calculus of Functions

Let f : R→ R be a C∞ function. Given any a ∈ R (e.g. a = 0), we can approximate the function
f by its Taylor series

f(x) ∼ f(a) + f ′(a)(x− a) +
f (2)(a)

2
(x− a)2 +

f (3)(a)
3!

(x− a)3 + . . . .

For x “close enough” to a, the Taylor series will converge to f(x), provided that f(x) is “analytic”.
Letting Pn(f)(x) denote the nth Taylor polynomial of f(x), another way to say this is that

f(x) = lim
n

Pn(f)(x).

2. The Calculus of Functors

Let F : C −→ D be a homotopy functor between pointed model categories.

Notation. We will denote by Top∗ the category of based spaces and more generally by TopY the
category of spaces over and under a given space Y . The category of spectra will be denoted Sp,
and S will denote the sphere spectrum.

A ring, or simplicial ring, will always mean either a brave new ring or a simplicial ring or a
dg-ring. If R is a commutative ring in any of these senses, we will write AlgR and ComAlgR

for the categories of augmented R-algebras and commutative R-algebras, respectively. ModR will
denote the category of (left) R-modules.

Example 1. Letting C or D be Top∗ or Sp, we have functors

IdTop∗ : Top∗ −→ Top∗,

Σ∞ : Top∗ −→ Sp,

Ω∞ : Sp −→ Top∗,
and

IdSp : Sp −→ Sp.

It will turn out that all of these functors are “analytic” and that in fact, apart from IdTop∗ , they
are all “degree 1”.

Example 2. For the algebraic analogue of the previous example, we use the fact that the stabi-
lization of ComAlgR is ModR (see [BM]). We have functors

IdComAlg : ComAlgR −→ ComAlgR,

TAQ : ComAlgR −→ModR,

Z : ModR −→ ComAlgR,

IdMod : ModR −→ModR,
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where TAQ is Topological André-Quillen Homology and Z(M) is the square-zero extension R⊕M
of R.

Example 3. One of the first examples studied by Goodwillie is Waldhausen’s A-theory functor
from (based) spaces to spectra, which can be defined as

A(X) = K(Σ∞(ΩX)+).

In particular,

A(∗) = K(Σ∞(∗+)) = K(S).

3. Degree n functors

We will define what it means for a functor to be “degree (at most) n”. Well, actually today we only
have time for n = 0 and n = 1. For any functor F , there is a universal degree n approximation
F −→ Pn(F ). Furthermore, the degree n approximation of Pn+1(F ) is again Pn(F ), and there
results a tower of polynomial approximations to F :

...

��
P3(F )

��
P2(F )

��
F

??�������������������

77ooooooooooooo //

''OOOOOOOOOOOOO P1(F )

��
P0(F ).

The analogue of the Taylor series is the homotopy limit of this tower

P∞(F ) = holim
n

Pn(F ).

3.1. Degree 0
Let’s start with the notion of a degree 0 functor. This is easy: a degree 0 polynomial function is
just a constant function, and we similarly define a functor to be degree 0 if it is constant.

While we’re at it, we might as well describe the degree 0 approximation to a functor F : simply
evaluate F at the basepoint in C : P0(F )(X) = F (∗). Since ∗ is terminal in C , any X will map to
∗, and applying F to this map provides the desired map

F (X) −→ F (∗) =: P0(F )(X).

A functor is said to be reduced if P0(F ) = ∗; that is, if F takes value ∗D at ∗C . Note that the
fiber of F −→ P0(F ) defines a reduced functor.
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3.2. Degree 1
Before discussing degree 1 functors in general, we will first discuss degree 1 functors that are
reduced (these are usually called linear or homogeneous of degree 1). A linear function f is
characterized by the fact that

f(x + y) = f(x) + f(y),

so one might ask for a functor that behaves similarly. But now one has a choice of how to interpret
‘+’, and in fact the different choices lead to different flavors of Calculus. One could interpret the
sum on both sides of the equation as a coproduct or as a product. One could also choose to interpret
one as a coproduct and the other as a product.

The usual definition (dropping the assumption that the functor is reduced) is as follows:

Definition. A homotopy functor F : C −→ D is said to be degree 1, or 1-excisive, if whenever

A //

��

B

��
C // D

is a homotopy pushout diagram in C , then

F (A) //

��

F (B)

��
F (C) // F (D)

is a homotopy pullback diagram in D . More succinctly, F is degree 1 if it takes (homotopy) pushouts
to (homotopy) pullbacks.

A particular case of a homotopy pushout diagram is, for any X ∈ C , the diagram

X //

��

∗

��
∗ // ΣX

Any reduced degree 1 functor must then produce a homotopy pullback diagram

F (X) //

��

∗

��
∗ // F (ΣX)

In other words, we find that
F (X) ' ΩF (ΣX).

For a general F , we have only a map

F (X) // holim

��

// F (∗)

��
F (∗) // F (ΣX)

To produce a degree 1 approximation to F , we want to force these maps to become equivalences,
and so we simply use the standard trick of passing to (homotopy) colimits over these maps.
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Letting T1(F )(X) denote the homotopy limit in the above diagram, we define the degree 1
approximation P1(F ) by the formula

P1(F )(X) = hocolim
n

(F (X)→ T1(F )(X)→ T1(T1(F ))(X)→ . . . ).

The associated reduced degree 1 functor, denoted D1(F )(X) sits in a fiber sequence

D1(F )(X) −→ P1(F )(X) −→ P0(F )(X).

In terms of Taylor polynomials of functions, P1(F )(X) plays the role of f(a) + f ′(a)(x − a) and
D1(F )(X) plays the role of f ′(a)(x− a). In light of this, it is reasonable to ask what plays the role
of the Taylor coefficient f ′(a).

Example 4. Since Sp is stable, homotopy pushout squares coincide with homotopy pullback
squares, so IdSp is a linear functor. Similarly, one can see that Σ∞ and Ω∞ are linear functors.

However, IdTop∗ is certainly not a linear functor, as homotopy pushout squares in spaces are
rarely homotopy pullback squares. According to the definition, T1(IdTop∗)(X) = ΩΣX, so that

P1(IdTop∗)(X) = hocolim
n

ΩnΣnX = Ω∞Σ∞(X).

Example 5. The answer in the algebraic example is similar. Since ModR is stable, all three
functors involving this category are linear. The identity functor on ComAlgR is not linear, and it
turns out that

P1(IdComAlgR
)(B) = Z ◦TAQ(B).
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