THE CALCULUS OF FUNCTORS
 TALK 3

BERTRAND GUILLOU

1. Degree n Functors

Last time, Rosona told us about degree n functors. The definition was as follows: a homotopy functor $F: \mathscr{C} \longrightarrow \mathscr{D}$ is n-excisive, or degree n, if for every object X_{0} and $(n+1)$-tuple $\left(X_{0} \rightarrow\right.$ $\left.X_{i}\right)_{1 \leq i \leq n+1}$ of cofibrations with domain X_{0}, then the homotopy pushout $(n+1)$-cube

is taken to a homotopy cartesian $(n+1)$-cube

By the way, $(n+1)$-cubes weakly equivalent to the first kind above are called strongly homotopy cocartesian $(n+1)$-cubes. Note that for a 2-cube, this is the same as being homotopy cartesian. Any 1-cube (namely, a map) is of this form and so counts as strongly homotopy cocartesian.

Any degree n polynomial can be thought of as a degree $n+1$ polynomial, and the same is true of functors:

Proposition 1. Let $F: \mathscr{C} \longrightarrow \mathscr{D}$ be degree n. Then F is also degree $n+1$.

Date: June 27, 2010.

Proof. We will show that every degree 1 functor is degree 2. Suppose given a strongly homotopy cocartesian 3-cube

Then, since each face of this 3-cube is a homotopy pushout square, it follows that each face of

is a homotopy pullback square (since F is assumed to be degree 1). This implies, in turn, that the 3 -cube is homotopy cartesian.

2. The Degree n-approximation

We've already seen that for any homotopy functor $F: \mathscr{C} \rightarrow \mathscr{D}$ there are functors $P_{0}(F)$ and $P_{1}(F)$, the degree 0 and degree 1 approximations to F. These come with natural maps

which are universal maps from F into polynomial functors of the corresponding degrees. The definition of $P_{0}(F)$ was simply $P_{0}(F)(X)=F(*)$, the value of F at the basepoint. The degree 1 approximation $P_{1}(F)$ was constructed as a certain homotopy colimit.

The construction of $P_{n}(F)$ is similarly as a certain homotopy colimit. Given $X \in \mathscr{C}$, consider the strongly homotopy cocartesian $(n+1)$-cube formed using the $n+1$ copies of the map $X \rightarrow C(X)$. Define an object $T_{n}(F)(X)$ to be the homotopy limit of the diagram obtained by applying F to this $(n+1)$-cube and removing the initial vertex $F(X)$. By definition, there is a canonical map

$$
t_{n} F: F(X) \longrightarrow T_{n}(F)(X)
$$

Applying this construction to the new functor $T_{n}(F)$ gives a map

$$
t_{n} T_{n} F: T_{n}(F)(X) \longrightarrow T_{n}\left(T_{n}(F)\right)(X)
$$

The degree n approximation $P_{n}(F)$ is then defined as the homotopy colimit

$$
P_{n}(F)(X):=\operatorname{hocolim}\left(F(X) \xrightarrow{\left(t_{n} F\right)(X)} T_{n}(F)(X) \xrightarrow{\left(t_{n} T_{n} F\right)(X)} T_{n}\left(T_{n}(F)\right)(X) \longrightarrow \ldots\right) .
$$

Example 1. When $n=1$, this agrees with the previous definition. $T_{1}(F)(X)$ is the homotopy limit of

Theorem 1 (Goodwillie, Calc III, Theorem 1.8). For any functor F, the functor $P_{n}(F)$ is degree n.

The key step in the proof of this theorem is the following lemma.
Lemma 1 (Goodwillie, Calc III, Lemma 1.9). Let \mathcal{X} be any strongly cocartesian ($n+1$)-cube. Then the map of cubes

$$
F(\mathcal{X}) \xrightarrow{t_{n} F}\left(T_{n} F\right)(\mathcal{X})
$$

factors through some cartesian $(n+1)$-cube.
By his own admittance, Goodwillie's proof of this lemma is "a little opaque". A streamlined proof was later given by Charles Rezk. The cartesian cube is simply the cube $F(\mathcal{X})$ with the initial vertex $F\left(X_{0}\right)$ replaced by the homotopy limit, and the work is in showing that $T_{n} F$ factors throught this particular cartesian cube.

Given the lemma, it then follows easily that $P_{n}(F)$ is n-excisive. Given any strongly cocartesian cube \mathcal{X}, the cube $P_{n}(F)(\mathcal{X})$ is a sequential hocolim of cubes $T_{n}(F)(\mathcal{X})$. By the lemma, this hocolim can be replaced by a sequential hocolim of cartesian cubes and is thus cartesian.

The universality of $P_{n}(F)$ is argued as follows. Note that if the functor F is already degree n, then the map

$$
t_{n} F: F(X) \longrightarrow\left(T_{n} F\right)(X)
$$

is an equivalence. This implies that the map

$$
p_{n} F: F(X) \longrightarrow\left(P_{n} F\right)(X)
$$

is also an equivalence for F of degree n.
Now suppose given a map $\alpha: F \longrightarrow G$, where G is degree n. Then we can consider the diagram of functors

G is degree n, so $p_{n} G$ is an equivalence. Thus α factors through $P_{n} F$.
Another important point is that if $k \leq n$ then the map

$$
P_{k}\left(p_{n} F\right):\left(P_{k} F\right)(X) \longrightarrow\left(P_{k} P_{n} F\right)(X)
$$

is an equivalence (for any F). To see this, it is enough to note that P_{k} commutes with sequential hocolim's and to verify that

$$
P_{k}\left(t_{n} F\right):\left(P_{k} F\right)(X) \longrightarrow\left(P_{k} T_{n} F\right)(X)
$$

is an equivalence. The latter statement follows from the facts that P_{k} commutes with finite homotopy colimits and that the map

$$
t_{n} P_{k} F:\left(P_{k}\right)(X) \longrightarrow\left(T_{n} P_{k} F\right)(X)
$$

is an equivalence since P_{k} is degree k and therefore also degree n.
In other words, we can sum up the discussion as
Proposition 2. The functor $P_{n} P_{k}(F)$ is equivalent to $P_{\min \{n, k\}}(F)$.

2.1. The Taylor Tower

Note that since $P_{n} F$ is degree n and therefore also degree $n+1$, the universal property gives a map $q_{n+1} F: P_{n+1} F \rightarrow P_{n} F$ such that

commutes. The various $P_{n} F$ then assemble into a tower, which is called the Taylor Tower of F (based at *).

3. The Layers in the Taylor Tower

Given a functor F, we define a new functor $D_{n} F$ to be the homotopy fiber of $r_{n} F$:

$$
D_{n} F \rightarrow P_{n} F \xrightarrow{q_{n} F} P_{n-1} F .
$$

Thus $D_{1} F(X)$ is the homotopy fiber of the map

$$
P_{1} F(X) \rightarrow P_{0} F(X)=F(*),
$$

or in other words the reduced version of the functor $P_{1} F$.
Say that a functor G is homogeneous of degree n if it is degree n and $P_{n-1} G \simeq *$.
Proposition 3. The nth layer $D_{n} F$ of the Taylor tower is a homogeneous degree n functor.
The fact that $D_{n} F$ is degree n follows from the next result, which is really a statement about homotopy limits commuting.

Proposition 4. Suppose that

$$
F \longrightarrow G \longrightarrow H
$$

is a fiber sequence of functors and that G and H are both degree n. Then so is F.
That $P_{n-1} D_{n}(F)$ is trivial follows from (1) the fact that P_{n-1} preserves fiber sequences (commutation of finite limits with sequential colimits and with limits) and (2) the fact that

$$
P_{n-1} P_{n} F \xrightarrow{P_{n-1} q_{n}} P_{n-1} P_{n-1} F
$$

is an equivalence.
Example 2. An example of a homogeneous degree n functor is the functor from spectra to spectra defined by $X \mapsto X^{\wedge n}$. This follows from Goodwillie's result (Calc II, Prop 3.4) that if $L: \mathscr{C}^{n} \rightarrow \mathscr{D}$ is degree k_{i} in the i th variable, then the composite functor $\mathscr{C} \xrightarrow{\Delta} \mathscr{C}^{n} \xrightarrow{L} \mathscr{D}$ is degree $k_{1}+\cdots+k_{n}$.

