THE CALCULUS OF FUNCTORS TALK 3

BERTRAND GUILLOU

1. Degree n Functors

Last time, Rosona told us about degree n functors. The definition was as follows: a homotopy functor $F : \mathscr{C} \longrightarrow \mathscr{D}$ is *n*-excisive, or degree n, if for every object X_0 and (n + 1)-tuple $(X_0 \rightarrow X_i)_{1 \le i \le n+1}$ of cofibrations with domain X_0 , then the homotopy pushout (n + 1)-cube

is taken to a homotopy cartesian (n+1)-cube

By the way, (n+1)-cubes weakly equivalent to the first kind above are called **strongly homotopy** cocartesian (n+1)-cubes. Note that for a 2-cube, this is the same as being homotopy cartesian. Any 1-cube (namely, a map) is of this form and so counts as strongly homotopy cocartesian.

Any degree n polynomial can be thought of as a degree n + 1 polynomial, and the same is true of functors:

Proposition 1. Let $F : \mathscr{C} \longrightarrow \mathscr{D}$ be degree n. Then F is also degree n + 1.

Date: June 27, 2010.

Proof. We will show that every degree 1 functor is degree 2. Suppose given a strongly homotopy cocartesian 3-cube

Then, since each face of this 3-cube is a homotopy pushout square, it follows that each face of

is a homotopy pullback square (since F is assumed to be degree 1). This implies, in turn, that the 3-cube is homotopy cartesian.

2. The Degree *n*-approximation

We've already seen that for any homotopy functor $F : \mathscr{C} \to \mathscr{D}$ there are functors $P_0(F)$ and $P_1(F)$, the degree 0 and degree 1 approximations to F. These come with natural maps

which are universal maps from F into polynomial functors of the corresponding degrees. The definition of $P_0(F)$ was simply $P_0(F)(X) = F(*)$, the value of F at the basepoint. The degree 1 approximation $P_1(F)$ was constructed as a certain homotopy colimit.

The construction of $P_n(F)$ is similarly as a certain homotopy colimit. Given $X \in \mathscr{C}$, consider the strongly homotopy cocartesian (n + 1)-cube formed using the n + 1 copies of the map $X \to C(X)$. Define an object $T_n(F)(X)$ to be the homotopy limit of the diagram obtained by applying F to this (n + 1)-cube and removing the initial vertex F(X). By definition, there is a canonical map

$$t_n F : F(X) \longrightarrow T_n(F)(X).$$

Applying this construction to the new functor $T_n(F)$ gives a map

$$t_n T_n F : T_n(F)(X) \longrightarrow T_n(T_n(F))(X)$$

The degree n approximation $P_n(F)$ is then defined as the homotopy colimit

$$P_n(F)(X) := \operatorname{hocolim}\left(F(X) \xrightarrow{(t_n F)(X)} T_n(F)(X) \xrightarrow{(t_n T_n F)(X)} T_n(T_n(F))(X) \longrightarrow \ldots\right).$$

Example 1. When n = 1, this agrees with the previous definition. $T_1(F)(X)$ is the homotopy limit of

$$F(CX) \longrightarrow F(\Sigma X).$$

Theorem 1 (Goodwillie, Calc III, Theorem 1.8). For any functor F, the functor $P_n(F)$ is degree n.

The key step in the proof of this theorem is the following lemma.

Lemma 1 (Goodwillie, Calc III, Lemma 1.9). Let \mathcal{X} be any strongly cocartesian (n+1)-cube. Then the map of cubes

$$F(\mathcal{X}) \xrightarrow{t_n F} (T_n F)(\mathcal{X})$$

factors through some cartesian (n+1)-cube.

By his own admittance, Goodwillie's proof of this lemma is "a little opaque". A streamlined proof was later given by Charles Rezk. The cartesian cube is simply the cube $F(\mathcal{X})$ with the initial vertex $F(X_0)$ replaced by the homotopy limit, and the work is in showing that $T_n F$ factors throught this particular cartesian cube.

Given the lemma, it then follows easily that $P_n(F)$ is *n*-excisive. Given any strongly cocartesian cube \mathcal{X} , the cube $P_n(F)(\mathcal{X})$ is a sequential hocolim of cubes $T_n(F)(\mathcal{X})$. By the lemma, this hocolim can be replaced by a sequential hocolim of *cartesian* cubes and is thus cartesian.

The universality of $P_n(F)$ is argued as follows. Note that if the functor F is already degree n, then the map

$$t_n F: F(X) \longrightarrow (T_n F)(X)$$

is an equivalence. This implies that the map

$$p_nF: F(X) \longrightarrow (P_nF)(X)$$

is also an equivalence for F of degree n.

Now suppose given a map $\alpha: F \longrightarrow G$, where G is degree n. Then we can consider the diagram of functors

$$F \xrightarrow{\alpha} G$$

$$p_n F \bigvee \qquad \sim \bigvee p_n G$$

$$P_n F \xrightarrow{\alpha} P_n G.$$

G is degree n, so $p_n G$ is an equivalence. Thus α factors through $P_n F$.

Another important point is that if $k \leq n$ then the map

$$P_k(p_nF): (P_kF)(X) \longrightarrow (P_kP_nF)(X)$$

is an equivalence (for any F). To see this, it is enough to note that P_k commutes with sequential hocolim's and to verify that

$$P_k(t_nF): (P_kF)(X) \longrightarrow (P_kT_nF)(X)$$

is an equivalence. The latter statement follows from the facts that P_k commutes with finite homotopy colimits and that the map

$$t_n P_k F: (P_k)(X) \longrightarrow (T_n P_k F)(X)$$
3

is an equivalence since P_k is degree k and therefore also degree n.

In other words, we can sum up the discussion as

Proposition 2. The functor $P_n P_k(F)$ is equivalent to $P_{\min\{n,k\}}(F)$.

2.1. The Taylor Tower

Note that since $P_n F$ is degree n and therefore also degree n+1, the universal property gives a map $q_{n+1}F : P_{n+1}F \to P_nF$ such that

commutes. The various $P_n F$ then assemble into a tower, which is called the **Taylor Tower** of F (based at *).

3. The Layers in the Taylor Tower

Given a functor F, we define a new functor D_nF to be the homotopy fiber of r_nF :

$$D_n F \to P_n F \xrightarrow{q_n F} P_{n-1} F.$$

Thus $D_1F(X)$ is the homotopy fiber of the map

$$P_1F(X) \to P_0F(X) = F(*),$$

or in other words the reduced version of the functor P_1F .

Say that a functor G is homogeneous of degree n if it is degree n and $P_{n-1}G \simeq *$.

Proposition 3. The nth layer D_nF of the Taylor tower is a homogeneous degree n functor.

The fact that $D_n F$ is degree *n* follows from the next result, which is really a statement about homotopy limits commuting.

Proposition 4. Suppose that

$$F \longrightarrow G \longrightarrow H$$

is a fiber sequence of functors and that G and H are both degree n. Then so is F.

That $P_{n-1}D_n(F)$ is trivial follows from (1) the fact that P_{n-1} preserves fiber sequences (commutation of finite limits with sequential colimits and with limits) and (2) the fact that

$$P_{n-1}P_nF \xrightarrow{P_{n-1}q_n} P_{n-1}P_{n-1}F$$

is an equivalence.

Example 2. An example of a homogeneous degree n functor is the functor from spectra to spectra defined by $X \mapsto X^{\wedge n}$. This follows from Goodwillie's result (Calc II, Prop 3.4) that if $L : \mathscr{C}^n \to \mathscr{D}$ is degree k_i in the *i*th variable, then the composite functor $\mathscr{C} \xrightarrow{\Delta} \mathscr{C}^n \xrightarrow{L} \mathscr{D}$ is degree $k_1 + \cdots + k_n$.