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1. Homogeneous Functors

Recall from last time that a functor F is homogeneous of degree n if it is degree n and
Pn−1F ' ∗.

Example 1. The nth layer DnF of the Taylor tower is a homogeneous degree n functor.

The fact that DnF is degree n follows from the next result, which is really a statement about
homotopy limits commuting.

Proposition 1. Suppose that
F −→ G −→ H

is a fiber sequence of functors and that G and H are both degree n. Then so is F .

That Pn−1Dn(F ) is trivial follows from (1) the fact that Pn−1 preserves fiber sequences (com-
mutation of finite limits with sequential colimits and with limits) and (2) the fact that

Pn−1PnF
Pn−1qn−−−−−→ Pn−1Pn−1F

is an equivalence.

Example 2. An example of a homogeneous degree n functor is the functor from spectra to spectra
defined by X 7→ X∧n (or X 7→ Σ∞X∧n from based spaces to spectra). That this functor is degree
n follows from Goodwillie’s result (Calc II, Prop 3.4) that if L : C n → D is degree ki in the ith
variable, then the composite functor C

∆−→ C n L−→ D is degree k1 + · · · + kn. That the functor is
homogeneous now follows from Goodwillie’s Lemma 3.1 (Calc III), which says that if F is a functor
of n variables, reduced with respect to each variable, then Pn−1(F ◦∆) ' ∗. More generally, given
any spectrum C, the functor

X 7→ C ∧X∧n

is homogeneous of degree n.

Example 3. Suppose that F : C −→ D is homogeneous of degree k, D is stable, and F factors
through the category Σn−D of objects with a Σn-action. Again, X 7→ X∧n would be an example.
Then the composite functor F (X)hΣn is again homogenous. The point is that (1) since D is stable,
degree k functors are those taking strongly cocartesian k + 1-cubes in C to cocartesian k + 1-cubes
in D and (2) homotopy orbits with respect to Σn is a homotopy colimit and will thus preserve
cocartesian cubes. More generally, given any spectrum C with a Σn-action, the functor

X 7→ (C ∧X∧n)hΣn

is homogeneous of degree n.
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The description of homotopy orbits as a homotopy colimit is as follows. Consider the category Sn

having a single object ? and End(?) = Σn. Then the category of Σn-objects in D is equivalent to the
category of functors Sn −→ D . Thus a Σn-object X in D corresponds to a functor X : Sn −→ D ,
and there is an identification XhΣn ' hocolimSn X.

2. The formula for Dn(F )

Since DnF (X) captures precisely the degree n part of the Taylor tower and not the lower degree
information, we think of it as an analogue of f (n)(0)

n! xn. It turns out that there is in fact a formula
for DnF (X) that resembles the formula from the calculus of functions.

2.1. n = 1
Let’s begin with D1(F )(X) since we already know D0(F )(X) = P0(F )(X) is a constant. Let
us assume for simplicity that F is a functor from based spaces to spectra. Define a spectrum
∂(1)(F )(∗), called the first derivative of F at ∗, to be D1(F )(S0). This new spectrum plays the
role of f ′(0). Then, since D1(F ) takes homotopy pushouts of spaces to homotopy pushouts of
spectra (homotopy pushout squares of spectra are the same are homotopy pullback squares), we
conclude that for any finite complex K we have an equivalence

∂(1)(F )(∗) ∧K ' D1(F )(K).

If we want such an equivalence for all spaces K, then we need a further assumption that D1(F )
preserves filtered homotopy colimits (such functors are called finitary). It turns out that assuming
that F satisfies this property implies the same for D1(F ).

Remark 1. An example of a degree one functor that is not finitary can be given as follows. Choose
an infinite complex W and define a functor FW by

FW (X) = Map(Σ∞W+,Σ∞X),

where Map denotes the mapping spectrum. There is a canonical map

D(Σ∞W+) ∧X −→ FW (X),

where D denotes the Spanier-Whitehead dual, but this map is not an equivalence if neither W nor
X is finite. Thus FW is not finitary.

Example 4. Recall that we previously considered the four functors

IdTop∗ : Top∗ −→ Top∗,

Σ∞ : Top∗ −→ Sp,

Ω∞ : Sp −→ Top∗,

and

IdSp : Sp −→ Sp.

All except the first are homogeneous degree 1 functors (and all are finitary). Although we have
really only discussed the first derivatives of functors landing in spectra, one can also do this for
functors with general codomain, and it turns out that the first derivative of all four of these functors
is the sphere spectrum S0.
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2.2. n > 1
To obtain the formula for Dn(F ) for n > 1, we will need Goodwillie’s result (Calc III, Theorem 3.5)
that there is a bijection{

symmetric multilinear
functors L : C n −→ D

}
↔

{
homogeneous degree n
functors F : C −→ D

}
.

To a symmetric, multilinear L is associated the homogenous functor (L◦∆)hΣn . To get a symmetric,
multilinear functor from a homogeneous one, we need the notion of the “cross effect of a functor”.

The nth cross effect of a functor F is a functor of n variables that measures the failure of F to
be a degree n− 1 functor. For instance, the first cross effect cr1(F ) is the fiber

cr1(F )(X) −→ F (X) −→ F (∗),
which is trivial if F is degree 0 (constant). The second cross effect is defined using the cocartesian
square

X ∨ Y

��

// Y

��
X // ∗.

Let us write β0(X, Y ) for the diagram obtained by removing the vertex X ∨ Y . The second cross
effect is then defined to be the fiber

cr2(F )(X, Y ) −→ F (X ∨ Y ) −→ holim F (β0(X, Y )).

More generally, one defines crn(F ) by a fiber sequence

crn(F )(X1, . . . , Xn) −→ F (X1 ∨ · · · ∨Xn) −→ holim F (β0(X1, . . . , Xn)).

The cross effect is symmetric since it is defined as the fiber of a map of symmetric functors, and
the nth cross effect of a degree n functor is multilinear by Calc III, Prop. 3.3.

The functor crn Dn(F ) is then a symmetric multilinear functor (for any F ). It is denoted D(n)(F )
and called the n-fold differential of F . We now define the nth derivative of F at the basepoint ∗ to
be

∂(n)F (∗) := D(n)F (S0, . . . , S0).
Multilinearity now gives that

D(n)F (X1, . . . , Xn) ' ∂(n)F (∗) ∧X1 ∧ . . . ∧Xn

if the Xi’s are finite or more generally if F is finitary.
According to the correspondence between homogeneous functors and symmetric multilinear ones,

we have DnF ' (D(n)(F ) ◦∆)hΣn , so that we conclude

DnF (X) ' (∂(n)F (∗) ∧X∧n)hΣn

for finite X or for all X in the finitary case. This is the desired formula for the nth layer in the
Taylor tower.

On the other hand, in order to calculate Dn(F )(X) using this formula, one must first find
∂(n)(F )(∗), which is defined using the cross effects of Dn(F ). It would be great to be able to under-
stand ∂(n)(F )(∗) without already knowing the functor Dn(F ). The following result of Goodwillie
allows us to do this.

Theorem 1 (Calc III, Theorem 6.1). The nth differential D(n)(F ) is equivalent to the multilin-
earization of the nth cross effect of F .

The multilinearization of a functor G of n variables is the effect of linearizing G with respect to
each variable. For instance, for a functor G of two variables with is reduced with respect to both
variables, the multilinearizaiton would be the functor hocolimn,k ΩnΩkG(ΣnX, ΣkY ).
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