
Computation of H∗(K(Z2, n);Z2)

As the title suggests – our goal is to compute mod 2 cohomology of K(Z2, n). The computation of the
cohomology of the Eilenberg-MacLane spaces will be performed via induction on the connectivity of the space.
The inductive step will be performed using Serre spectral sequence of the fiber sequence K(Z2, n) ∗

K(Z2, n+1). However, instead of tackling the problem directly, we will discuss some general properties
of Serre spectral sequence and then apply those to our situation.

Suppose we are given a fibration F X B, and that it satisfies the usual conditions for existence
of properly convergent Serre spectral sequence, i.e. the trivial action of π1(B, ∗) on H∗(F ). Set the coefficient
group to be G. Let us look at the En-page of the spectral sequence for cohomology, where n ≥ 2; there
we have a differential dn : E0,n−1

n En,0
n . This differential is often referred to as transgression. There

is one transgression per dimension; therefore, we will write it as τ , since most of the time the dimension
is understood. Note that E0,n−1

n is a subgroup of E0,n−1
2 = H0(B;Hn−1(F ;G)) = Hn−1(F ;G), since no

non-trivial differentials enter E0,n−1
∗ spot of the spectral sequence. Similarly, En,0

n is a quotient of Hn(B;G).
We can try to “manufacture” a map relating Hn−1(F ;G) to Hn(B;G), using ordinary long exact sequence
coboundary map. Here is what we will eventually arrive at:

Hn−1(F ;G) Hn(X,F ;G) Hn(B, ∗;G) Hn(B;G)

δ−1(im p∗) Hn(B;G)/j∗(ker p∗)

δ p∗ j∗

∼=

µ

We get a map from δ−1(im p∗) to Hn(B;G)/j∗(ker p∗). Note also that j∗ is an isomorphism if n > 0. It is
not unnatural to expect δ−1(im p∗) = E0,n−1

n ⊂ E0,n−1
2 = Hn−1(F ;G) and Hn(B;G)/j∗(ker p∗) ∼= En,0

n and
the map µ be the same as τ . In fact, the following statement is true.

Proposition. There exists a commutative diagram,

δ−1(im p∗) Hn(B;G)/j∗(ker p∗)

E0,n−1
n En,0

n

µ

i ∼= ν∼=

τ

Proof. See [Hatcher, SSAT, Ch1, pp.21-22].

We set our coefficient group to be Z2 from now on. The action of Steenrod squares on H∗(F ;Z2) and
H∗(B;Z2) descend to an action on E0,n−1

n and En,0
n . The elements of E0,n−1

n in H∗(F ;Z2) are called
transgressive. If α is transgressive then δα = p∗β for some β ∈ Hn(B, ∗;Z2). Let Sq be a Steenrod square.
Then δSqα = Sq δα = Sq p∗β = p∗Sq β, implying that Sqα is also transgressive. Let us emphasize that the
coboundary operations and squares commute due to stability of squares. Similarly, an element of j∗(ker p∗)
is form, j∗(γ), where p∗γ = 0. Then Sq j∗(γ) = j∗(Sq γ) and p∗Sq γ = Sq p∗γ = 0. Thus, we have a well-
defined action of Steenrod squares on En,0

n . Furthermore, we claim that squares commute with transgressions.
Indeed, if δα = p∗β, then j∗β = τα. Then δSqα = p∗Sq β, i.e. τSqα = j∗Sq β = Sq j∗β = Sq j∗β = Sq τα.
Thus, we can see that transgression work well with Steenrod squares.

In certain special situations transgressions can give enough information to compute H∗(B;Z2) in terms
of H∗(ΩB;Z2). The following theorem is due to Borel.

Theorem. Let B be a simply-connected space and H∗(ΩB;Z2) have a simple system of transgressive
generators, with finitely many of those generators in each dimension. Then H∗(B;Z2) is a polynomial
ring generated by (any) representatives of transgressions of Serre spectral sequence for the fiber sequence

ΩB ∗ B, of this simple generators.

If k is a field, a simple system of generators for a k-algebra A, is a subset S of A, such that the elements
of form x1x2 . . . xn, where xi’s are distinct elements of S, form a basis for A as a k-module.

Proof. See [Mosher/Tangora, Ch9, pp.91-92] & [Hatcher, SSAT, Ch1, pp.54-58].
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Note that a graded polynomial algebra Z2[x1, x2, . . . ] has a simple system of generators, namely {x2ji }.
Thus, if we have that H∗(ΩB;Z2) is a polynomial algebra over a set of trangressive elements, then so is

H∗(B;Z2). This is a consequence of the fact that x2
j

= Sq 2j−1n . . . Sq 2nSq nx (n is the degree of x) and
that the squares preserve transgressiveness. This is a good place to transition to a more concrete situation.

We begin with K(Z2, 1). We know that K(Z2, 1) = RP∞. Using the standard cell structure of RP∞ or

the Gysin sequence of the universal line bundle L RP∞, we can determine that H∗(RP∞;Z2) = Z2[ι1],
where ι1 is the non-zero element of dimension 1 (and hence is the fundamental class). Furthermore, ι1 is
transgressive, since the differentials before τ all map into a zero group. Thus, using the previous observation
H∗(K(Z2, 2);Z2) is polynomial algebra over Z2. In fact, we can continue the argument, and understand what
the generators of this cohomology ring are using Borel’s theorem. The following theorem is due to Serre.

Theorem. H∗(K(Z2, n);Z2) is the polynomial ring Z2[Sq I(ιn)], where ιn is the generator of Hn(K(Z2, n);Z2)
and I ranges over all admissible sequences of excess e(I) < n.

As a reminder a finite sequence I = (i1, i2, ...) is admissible if ij ≥ 2ij+1, Sq Ix = Sq i1Sq i2 ...x, and
e(I) = i1 −

∑
j≥2 ij . The theorem will follow directly from the following easy observations.

Lemma. (a) Sq I(ιn) = 0 if I is admissible and e(I) > n.

(b) The elements Sq I(ιn) with I admissible and e(I) = n are exactly the powers (Sq J(ιn))2
j

with J
admissible, e(J) < n, and j > 0.

Proof. (a) Note that i1 = e(I) +
∑

j≥2 ij > n +
∑

j≥2 ij = |Sq i2Sq i3 . . . (ιn)|, which implies that

Sq I(ιn) = Sq i1Sq i2 . . . (ιn) = 0.

(b) Let us pick Sq I(ιn), such that e(I) = n. Then i1 = n +
∑

j≥2 ij = |Sq Ĩ(ιn)|, where Ĩ = (i2, i3, . . . ).

Using the squaring property we get Sq I(ιn) = Sq i1Sq Ĩ(ιn) = (Sq Ĩ(ιn))2. The sequence Ĩ is clearly admissi-

ble, and e(Ĩ) = i2−
∑

j≥3 ij = e(I)+(2i2− i1) ≤ e(I) = n. If e(Ĩ) = n, we repeat the process, otherwise – we

stop. The process will eventually stop, yielding an equality of form Sq I(ιn) = (Sq J(ιn))2
j

, where e(J) < n
and j > 0, which is what we want.

To prove the converse inclusion, we essentially reverse the argument. Suppose we are given an element
(Sq J(ιn))2

j

, where J is admissible, e(J) ≤ n and j > 0. Let J̃ be the same as J except with an extra n+|J | on

its left, where |J | is the degree of J . Clearly, e(J̃) = n. Note that n+|J |−2j1 = n−j1+
∑

i≥2 ji = n−e(J) ≥ 0,

which implies that J̃ is admissible. We continue the process until we reach the equality (Sq J(ιn))2
j

= Sq I(ιn),
where I is admissible and e(I) = n.

Proof of Serre’s theorem. We addressed the n = 1 case earlier. So suppose the statement of the
theorem is true for n. Then H∗(K(Z2, n);Z2) has a simple system of generators {(Sq J(ιn))2

j}, such that
e(J) < n. ιn is trangressive for the same reason that ι1 was. Therefore, the simple system of generators we
have consists of transgressive elements. This set is the same as Sq I(ιn), where e(I) ≤ n. Thus, H∗(K(Z2, n+

1);Z2) is generated by representatives of elements τ(Sq I(ιn)) = Sq I(τ(ιn)) = Sq I(ιn+1) = Sq I(ιn+1),
specifically, Sq I(ιn+1), where I is admissible and e(I) < n + 1. This completes the inductive step and the
proof of the theorem.

Finally, let us mention what implications this theorem has on the structure of Steenrod algebra. We
remind the reader that the Steenrod algebra, written as A2, is the Z2-algebra of stable reduced cohomology
operations. Here is a precise definition. First we consider general operations, which we define as natural
transformations H̃k(−;Z2) H̃n+k(−;Z2) for various k, n ∈ N. Let this set be denoted by On,k. Clearly,
On,k is a Z2-module. Assemble these modules into a bigger one On =

⊕∞
k=1 On,k. Consider all the elements

of form η − ζ ∈ On, where η ∈ On,k and ζ ∈ On,k+r, such that for any cohomology class α of degree k,
Σrη(α) = ζ(Σrα). These elements form a Z2-submodule. Let the quotient module of On by this submodule
be denoted by Sn. Define A2 to be

⊕∞
n=0 Sn. The algebra structure is given by composition.

Let η be an operation in On,k. Using Yoneda type argument one can show that η is completely determined

by its value at the fundamental class η(ιk) ∈ H̃n+k(K(Z2, n);Z2). By Serre’s theorem, η(ιk) is a polynomial
p
(
SqI(ιk)

)
, where I ranges over admissible sequences with excesses less than n, and p does not contain any

degree 0 terms. By naturality of Steenrod squares and cup product, we can conclude that η(α) = p(Sq I(α)).
Define another operation η̂ ∈ On,k+1 via the equation η̂(α) = p̂

(
SqI(α)

)
, where p̂ is the linear part of p. The

elements η and η̂ represent the same class in A2: Ση(α) = Σp(Sq I(α)) = Σp̂(Sq I(α)) = p̂(Sq I(Σα)) = η̂(Σα).
The fact that only the linear part of the polynomial remains is a consequence of the fact that the cup product
on suspended spaces is 0. Thus, any element of A2 is represented by a linear polynomial on admissible
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sequences of Steenrod operations. Now suppose η ∈ On,k and ζ ∈ On,k+r represent the same element in A2,
and η(α) = p(Sq I(α)) and ζ(β) = q(Sq I(β)), where p and q are linear. Then Σrp(Sq I(ιk)) = Σrη(ιk) =
ζ(Σrιk) = q(Sq I(Σrιk)) = Σrq(Sq I(ιk)), which implies p = q, since both of the polynomials are linear. Thus,
any element of Steenrod algebra can be uniquely expressed as a Z2-linear combination of admissible Steenrod
squares. However, we know that using Adem relations one can convert any sequence of squares into an a
sum of admissibles. Therefore, the following theorem holds.

Theorem. A2 is the free associative algebra on symbols {Sq n}∞n=0 modulo the Adem relations.
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