Summer Seminar Notes: Taylor Tower of the Forgetful Functor

Rosona Eldred

2010-08-05

Introduction

Let k be a commutative (probably simplicial) ring (but not yet ring spectrum). We'll be working with functors between the two categories:

$$
\mathscr{C}:=k \backslash \text { CommRings } / k \longrightarrow k \text {-Modules }=: \mathscr{D}
$$

Remark on stability: I need to pull the stability card in one place, I'll mention it explicitly, and what this means is that we're working with chain complexes of k-Modules. Honestly, that's where we should be working if I'm going to be faithful to [2], but I'm trying to prep you to think about [5] and (4).

Let U denote the forgetful functor from \mathscr{C} to \mathscr{D} and $\widetilde{X}:=$ the cofibrant-fibrant replacement of X. We will prove the following:

Theorem 0.1.

$$
P_{1} U(X) \simeq I / I^{2}(\widetilde{X})
$$

i.e. $P_{1} U$ is the derived functor of I / I^{2}.

Theorem 0.2.

$$
P_{n} U(X) \simeq I / I^{n+1}(\tilde{X})
$$

i.e. $P_{n} U$ is the derived functor of I / I^{n+1}.

Corollary 0.3.

$$
D_{n} U(X) \simeq I^{n} / I^{n+1}(\widetilde{X})
$$

CAVEAT: I have not been faithful to the forms of the proofs in [2]. The form included here of the proof for Theorem 0.1 follows from talks I had with Kristine Bauer this summer. The lemma used to prove 0.2 is as in [2], but the proof is a bit different otherwise. They constructed the D_{n} 's first and used a 5 -/snake-lemma to conclude with induction what they wanted.

Theorem 0.1

We're first going to reduce our calculation to that of the augmentation ideal I.
Given $X \in \mathscr{C}, X$ is of the form $k \oplus I(X)$ where $I(X)=\operatorname{ker}(X \rightarrow k)$.
Remark 0.4. U is not a reduced functor since $U(k)=k \neq 0$.

$$
\widetilde{U}(X):=\frac{U(X)}{U(k)}=\frac{I(X) \oplus k}{k} \simeq I(X)
$$

Recall that to construct P_{1} (via the cotriple model), we need to calculate cross-effects, and $c r_{2} F \simeq c r_{2} \widetilde{F}$ (reduced). So we might as well use $\widetilde{U}=I$.

Therefore, by Remark 0.4 constructing the Taylor Tower of U boils down to constructing that of I.

Proof of Theorem 0.1.
Remark 0.5. For $X \in \mathscr{C}$,

$$
X \otimes_{k} X \simeq k \oplus I \oplus I \oplus(I \otimes I)
$$

Let's calculate $\mathrm{Cr}_{2} \widetilde{U}(X)$. This is given as

$$
\begin{aligned}
\text { total hofib }\left(\begin{array}{ccc}
\widetilde{U}(X \otimes X) & \longrightarrow & \widetilde{U}(X) \\
\downarrow & & \downarrow \\
\widetilde{U}(X) & \longrightarrow & 0
\end{array}\right) & \simeq \text { total hofib }\left(\begin{array}{ccc}
I \oplus I \oplus(I \otimes I) & \longrightarrow & I \\
\downarrow & & \downarrow \\
I & \longrightarrow & 0
\end{array}\right) \\
& \simeq \operatorname{hofib}(I \oplus I \oplus(I \otimes I) \rightarrow I \oplus I) \\
& \text { (Since the hoPB is } I \oplus I, \text { as modules) } \\
\simeq & I \otimes_{k} I
\end{aligned}
$$

Then

$$
\begin{aligned}
P_{1} \widetilde{U}(X) & \simeq \operatorname{hocof}\left(c r_{2} \widetilde{U}(X) \xrightarrow{+} \widetilde{U}(X)\right) \\
& \simeq \operatorname{hocof}(I(X) \otimes I(X) \xrightarrow{m} I(X)) \\
& \simeq I / I^{2}(\widetilde{X})
\end{aligned}
$$

Theorem 0.2 and Corollary 0.3

First we need the following Lemma:
Lemma 0.6.

$$
c r_{n} I \simeq I^{\otimes_{k} n}
$$

Recall the inductive definition of cross-effect:
Definition 0.7 (due to [1). In our setting, the nth cross-effect of F is the functor defined inductively by

$$
\operatorname{cr}_{n} F\left(M_{1}, \ldots, M_{n}\right) \oplus c r_{n-1} F\left(M_{1}, M_{3}, \ldots, M_{n}\right) \oplus c r_{n-1} F\left(M_{2}, M_{3}, \ldots, M_{n}\right) \cong c r_{n-1} F\left(M_{1} \oplus M_{2}, M_{3}, \ldots, M_{n}\right)
$$

that is,

$$
c r_{n} F\left(M_{1}, \ldots, M_{n}\right) \cong \frac{c r_{n-1} F\left(M_{1} \otimes M_{2}, M_{3}, \ldots, M_{n}\right)}{c r_{n-1} F\left(M_{1}, M_{3}, \ldots, M_{n}\right) \oplus c r_{n-1} F\left(M_{2}, M_{3}, \ldots, M_{n}\right)}
$$

Proof of Lemma 0.6. By induction. Previous work in the proof of Theorem 0.1 establishes our (first interesting) base case, that $c r_{2} I \simeq I \otimes I$. Now assume $c r_{n-1} I \simeq I^{\otimes_{k}(n-1)}$.

Then,

$$
\begin{array}{rlr}
c r_{n} I\left(X_{1}, \ldots, X_{n}\right) & \cong \frac{c r_{n-1} I\left(X_{1} \otimes_{k} X_{2}, X_{3}, \ldots, X_{n}\right)}{c r_{n-1} I\left(X_{1}, X_{3}, \ldots, X_{n}\right) \oplus c r_{n-1} I\left(X_{2}, X_{3}, \ldots, X_{n}\right)} & \text { by Definition 0.7] } \\
& \cong \frac{I\left(X_{1} \otimes_{k} X_{2}\right) \otimes_{k} I\left(X_{3}\right) \otimes_{k} \cdots \otimes_{k} I\left(X_{n}\right)}{\left(I\left(X_{1}\right) \otimes_{k} I\left(X_{3}\right) \otimes_{k} \cdots \otimes_{k} I\left(X_{n}\right)\right) \oplus\left(I\left(X_{2}\right) \otimes_{k} \cdots \otimes_{k} I\left(X_{n}\right)\right)} & \text { by inductive hyp } \\
& \cong \frac{\left[I\left(X_{1}\right) \oplus I\left(X_{2}\right) \oplus\left(I\left(X_{1}\right) \otimes_{k} I\left(X_{2}\right)\right)\right] \otimes_{k} I\left(X_{3}\right) \otimes_{k} \cdots \otimes_{k} I\left(X_{n}\right)}{\left(I\left(X_{1}\right) \otimes_{k} I\left(X_{3}\right) \otimes_{k} \cdots \otimes_{k} I\left(X_{n}\right)\right) \oplus\left(I\left(X_{2}\right) \otimes_{k} \cdots \otimes_{k} I\left(X_{n}\right)\right)} & \text { breaking up } I\left(X_{1} \otimes_{k} X_{2}\right) \\
& \cong I\left(X_{1}\right) \otimes_{k} \cdots \otimes_{k} I\left(X_{n}\right) &
\end{array}
$$

Therefore, $c r_{n} \circ \operatorname{diag}(X) \simeq I^{\otimes_{k} n}(X)$.

Now we can prove Theorem 0.2 quite simply.
Proof of Theorem 0.2 .

$$
\begin{aligned}
P_{n} \widetilde{U}(X) & \simeq \operatorname{hocof}\left(c r_{n} I(X) \rightarrow I(X)\right) \\
& \simeq \operatorname{hocof}\left(I^{\otimes_{k}(n+1)} \rightarrow I(X)\right) \quad \text { by Lemma } 0.6 \\
& \simeq I / I^{n+1}(\widetilde{X})
\end{aligned}
$$

The following holds for any pointed model category, not necessarily one that is stable. We're working in an augmented setting, which counts as 'pointed'. This is the version I learned from Tom Goodwillie, but I think it is common, as in [3].

Theorem 0.8 (Octahedral Axiom). Given a sequence of maps $A \rightarrow B \rightarrow C$, the following is a cofiber sequence

$$
\operatorname{cof}(A \rightarrow B) \rightarrow \operatorname{cof}(A \rightarrow C) \rightarrow \operatorname{cof}(B \rightarrow C)
$$

where we usually mean 'homotopy cofiber' when we say 'cofiber'. By cofiber sequence, I mean that $\operatorname{cof}(B \rightarrow C)=\operatorname{cof}[\operatorname{cof}(A \rightarrow B) \rightarrow \operatorname{cof}(A \rightarrow C)]$.

Proof of Corollary 0.3. Let's apply the octahedral axiom to the following sequence of k modules

$$
I^{n+1}(X) \rightarrow I^{n}(X) \rightarrow I(X)
$$

This yields the following cofiber sequence

$$
\begin{array}{ccccc}
\operatorname{cof}\left(I^{n+1}(X) \rightarrow I^{n}(X)\right) & \longrightarrow & \operatorname{cof}\left(I^{n+1}(X) \rightarrow I(X)\right) & \longrightarrow & \operatorname{cof}\left(I^{n}(X) \rightarrow I(X)\right) \\
\mathbb{\|} & \mathbb{Z} & & \mathbb{R} \\
I^{n+1} / I^{n}(X) & \longrightarrow & I / I^{n+1}(X) & \longrightarrow & I / I^{n}(X)
\end{array}
$$

Theorem 0.2 let's us rewrite this as

$$
\begin{equation*}
I^{n+1} / I^{n}(X) \longrightarrow P_{n} I(X) \longrightarrow P_{n-1} I(X) \tag{*}
\end{equation*}
$$

and here's where we need stability.
A note on stability: in the (anticipated) 'Brave $\mathrm{New}^{\prime} / E_{\infty}$ setting, k-Modules will be stable. Here, to make everything play nicely, since I'm acting 'classically', I need to mention that we're landing in chain complexes of k-Modules, so that I can then say that $(*)$ is not only a cofiber sequence but a fiber sequence, i.e. $I^{n+1} / I^{n}(X)=\operatorname{hofib}\left(P_{n} I(X) \rightarrow P_{n-1} I(X)\right)$, where we know that by definition, $D_{n} I(X)=\operatorname{hofib}\left(P_{n} I(X) \rightarrow P_{n-1} I(X)\right)$, so we have our desired result.

References

[1] Samuel Eilenberg and Saunders MacLane, On the groups $h(\pi, n)$, ii: Methods of computation, The Annals of Mathematics, Second Series 60 (1954), no. 1, 49-139.
[2] M Kantorovitz and R McCarthy, The taylor towers for rational algebraic K-theory and hochschild homology, Homology, Homotopy and Applications 4 (2002), 191-212.
[3] Jason Lo, Octahedral axiom in triangulated categories, Notes from talk in Student Algebraic Geometry Seminar at Stanford, http://math.stanford.edu/~jasonlo/writings/octahedral_talk.pdf, Nov 2008.
[4] R McCarthy and V Minasian, On triples, operads and generalized homogeneous functors, Preprint (2004).
[5] Randy McCarthy and Vahagn Minasian, Hkr theorem for smooth s-algebras, Journal of Pure and Applied Algebra 185 (2003), no. 1-3, 239 - 258.

