1. Chain Rule:
(a) Let $h(t)=\sin (\cos (\tan t))$. Find the derivative with respect to $t$.
(b) Let $s(x)=\sqrt[4]{x}$ where $x(t)=\ln (f(t))$ and $f(t)$ is a differentiable function. Find $\frac{d s}{d t}$.
2. Parameterized curves:
(a) Describe and sketch the curve given parametrically by

$$
\left\{\begin{array}{l}
x:=5 \sin (3 t) \\
y=3 \cos (3 t)
\end{array} \quad, \text { when } 0 \leq t<\frac{2 \pi}{3}\right.
$$

What happens if we allow $t$ to vary between 0 and $2 \pi$ ?
(b) Set up, but do not evaluate an integral that calculates the arc length of the curve described in part (a).
(c) Consider the equation $x^{2}+y^{2}=16$. Graph the set of solutions of this equation in $\mathbb{R}^{2}$ and find a parameterization that traverses the curve once counterclockwise.
3. 1st and 2nd Derivative Tests:
(a) Use the 2nd Derivative Test to classify the critical numbers of the function $f(x)=x^{4}-8 x^{2}+10$.
(b) Use the 1st Derivative Test and find the extrema of $h(s)=s^{4}+4 s^{3}-1$.
(c) Explain why the 2 nd Derivative test is unable to classify all the critical numbers of $h(s)=s^{4}+4 s^{3}-1$.
4. Consider the function $f(x)=x^{2} e^{-x}$.
(a) Find the best linear approximation to $f$ at $x=0$.
(b) Compute the second-order Taylor polynomial at $x=0$.
(c) Explain how the second-order Taylor polynomial at $x=0$ demonstrates that $f$ must have a local minimum at $x=0$.
5. Consider the integral $\int_{0}^{\sqrt{3 \pi}} 2 x \cos \left(x^{2}\right) d x$.
(a) Sketch the area in the $x y$-plane that is implicitly defined by this integral.
(b) To evaluate, you will need to perform a substitution. Choose a proper $u=f(x)$ and rewrite the integral in terms of $u$. Sketch the area in the $u v$-plane that is implicitly defined by this integral.
(c) Evaluate the integral $\int_{0}^{\sqrt{3 \pi}} 2 x \cos \left(x^{2}\right) d x$.

