Tuesday, August 30 ** Orthogonal projections and planes in \mathbb{R}^3 .

- 1. Let $\mathbf{u} = (2, 4)$, $\mathbf{v} = (3, 1)$, and $\mathbf{w} = (4, 4)$.
 - (a) Find the projections $\text{proj}_{\mathbf{v}}(\mathbf{u})$ and $\text{proj}_{\mathbf{v}}(\mathbf{w})$ of the vectors \mathbf{u} and \mathbf{w} onto \mathbf{v} .
 - (b) The orthogonal complement of \mathbf{u} with respect to \mathbf{v} is the vector

$$\operatorname{orth}_{\mathbf{v}}(\mathbf{u}) = \mathbf{u} - \operatorname{proj}_{\mathbf{v}}(\mathbf{u})$$

Find orth_v(\mathbf{u}) and orth_v(\mathbf{w}). Represent all seven vectors in a figure (the three originals, the two projections, and the two complements).

- (c) Check that the complements $\operatorname{orth}_{\mathbf{v}}(\mathbf{u})$ and $\operatorname{orth}_{\mathbf{v}}(\mathbf{w})$ are both orthogonal to \mathbf{v} .
- 2. Let P = (1, 2, 3), Q = (0, 1, 2), and $\mathbf{u} = (1, 2, 1)$.
 - (a) Find the distance from *P* to the line *t* **u**. Hint: What is the closest point to *P* on this line?
 - (b) Find the distance from *P* to the line $Q + t \mathbf{u}$. Hint: The distance from *P* to $Q + t \mathbf{u}$ is the same as the distance from which point to the line $t \mathbf{u}$?
- 3. Let **u** and **v** be vectors in \mathbb{R}^2 . Set

$$\mathbf{w} = \operatorname{orth}_{\mathbf{v}}(\mathbf{u}) = u - \operatorname{proj}_{\mathbf{v}}(\mathbf{u}).$$

Find $\text{proj}_{\mathbf{w}} \mathbf{u}$ in terms of \mathbf{u} , \mathbf{v} , and \mathbf{w} .

4. Let P = (-1, 3, 0) and let \mathscr{P} be the plane described by the equation

$$-2x + y + z = 3.$$

- (a) Find a normal vector **n** to the plane \mathscr{P} . Hint: First find a normal vector to the plane through the origin -2x + y + z = 0. How is this normal vector related to **n**?
- (b) Find a point *Q* on the plane \mathscr{P} . Check that if *R* is also a point on \mathscr{P} , then R Q lies on the plane through the origin

$$-2x + y + z = 0.$$

In other words, this says that the translate of the plane \mathscr{P} by Q is the plane through the origin.

- (c) Find the projection $\text{proj}_{\mathbf{n}}(P Q)$.
- (d) Use the information from the previous parts to find the distance from *P* to \mathscr{P} .