Tuesday, August $30 \quad * * \quad$ Orthogonal projections and planes in \mathbb{R}^{3}.

1. Let $\mathbf{u}=(2,4), \mathbf{v}=(3,1)$, and $\mathbf{w}=(4,4)$.
(a) Find the projections $\operatorname{proj}_{\mathbf{v}}(\mathbf{u})$ and $\operatorname{proj}_{\mathbf{v}}(\mathbf{w})$ of the vectors \mathbf{u} and \mathbf{w} onto \mathbf{v}.
(b) The orthogonal complement of \mathbf{u} with respect to \mathbf{v} is the vector

$$
\operatorname{orth}_{\mathbf{v}}(\mathbf{u})=\mathbf{u}-\operatorname{proj}_{\mathbf{v}}(\mathbf{u})
$$

Find $\operatorname{orth}_{\mathbf{v}}(\mathbf{u})$ and $\operatorname{orth}_{\mathbf{v}}(\mathbf{w})$. Represent all seven vectors in a figure (the three originals, the two projections, and the two complements).
(c) Check that the complements orth $\mathbf{v}_{\mathbf{v}}(\mathbf{u})$ and $\operatorname{orth}_{\mathbf{v}}(\mathbf{w})$ are both orthogonal to \mathbf{v}.
2. Let $P=(1,2,3), Q=(0,1,2)$, and $\mathbf{u}=(1,2,1)$.
(a) Find the distance from P to the line $t \mathbf{u}$. Hint: What is the closest point to P on this line?
(b) Find the distance from P to the line $Q+t \mathbf{u}$. Hint: The distance from P to $Q+t \mathbf{u}$ is the same as the distance from which point to the line $t \mathbf{u}$?
3. Let \mathbf{u} and \mathbf{v} be vectors in \mathbb{R}^{2}. Set

$$
\mathbf{w}=\operatorname{orth}_{\mathbf{v}}(\mathbf{u})=u-\operatorname{proj}_{\mathbf{v}}(\mathbf{u}) .
$$

Find $\operatorname{proj}_{\mathbf{w}} \mathbf{u}$ in terms of \mathbf{u}, \mathbf{v}, and \mathbf{w}.
4. Let $P=(-1,3,0)$ and let \mathscr{P} be the plane described by the equation

$$
-2 x+y+z=3
$$

(a) Find a normal vector \mathbf{n} to the plane \mathscr{P}. Hint: First find a normal vector to the plane through the origin $-2 x+y+z=0$. How is this normal vector related to \mathbf{n} ?
(b) Find a point Q on the plane \mathscr{P}. Check that if R is also a point on \mathscr{P}, then $R-Q$ lies on the plane through the origin

$$
-2 x+y+z=0
$$

In other words, this says that the translate of the plane \mathscr{P} by Q is the plane through the origin.
(c) Find the projection $\operatorname{proj}_{\mathbf{n}}(P-Q)$.
(d) Use the information from the previous parts to find the distance from P to \mathscr{P}.

