Math 241 - Solutions to Quiz 5- Thursday, November 10

1. Let P be the parallelogram in the plane in the figure to the right. Write C for the boundary curve of P.
(a) Let $F(x, y)=\left(-y^{2}+y, x^{2}+y\right)$. Use Green's theorem to rewrite $\int_{C} F \cdot d \mathbf{r}$ as a double integral. (2 points)

SOLUTION:

We take C with counterclockwise orientation. Applying Green's theorem gives

$$
\int_{C} F \cdot d \mathbf{r}=\iint_{P} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d A=\iint_{P} 2 x+2 y-1 d A
$$

(b) Use a change of coordinates to rewrite your answer from part (a) as a double integral over the unit square $[0,1] \times[0,1]$. (3 points)

SOLUTION:

Use the transformation $T(u, v)=(-u-3 v, 2 u+v)$. T takes the unit square to P. Then $J(T)=5$ and we have

$$
\begin{aligned}
\iint_{P} 2 x+2 y-1 d A & =\int_{0}^{1} \int_{0}^{1} 2(-u-3 v)+2(2 u+v)-1(5 d u d v) \\
& =5 \int_{0}^{1} \int_{0}^{1} 2 u-4 v-1 d u d v
\end{aligned}
$$

(c) Evaluate the integral you found in part (c). (2 points)

SOLUTION:

2. Let S be the surface parametrized by $\mathbf{r}(u, v)=\left(u^{2}+1, v^{3}+1, u+v\right)$. Find an equation for the tangent plane to S at the point $\mathbf{r}(1,1)$. (3 points)

SOLUTION:

$\mathbf{r}_{u}=(2 u, 0,1)$ and $\mathbf{r}_{v}=\left(0,3 v^{2}, 1\right)$. We have

$$
\mathbf{r}_{u} \times \mathbf{r}_{v}=\operatorname{det}\left(\begin{array}{ccc}
i & j & k \\
2 u & 0 & 1 \\
0 & 3 v^{2} & 1
\end{array}\right)=\left(-3 v^{2},-2 u, 6 u v^{2}\right)
$$

So a normal to the surface at $\mathbf{r}(1,1)=(2,2,2)$ is given by $(-3,-2,6)$ and an equation for the tangent plane is $-3(x-2)-2(y-2)+6(z-2)=0$.

