Math 241 - Solutions to Quiz 6- Thursday, December 1

1. Let *C* be the semi-ellipse $x^2 + 4y^2 = 1$, $x \ge 0$ and consider the vector field

$$F(x,y) = (2,x^2).$$

(a) Find a parametrization r(t) of C and normal vector n(t) pointing to the outside of the ellipse. (3 points)SOLUTION:

$$\mathbf{r}(t) = (\cos t, 1/2\sin t), \ -\pi/2 \le t \le \pi/2$$

 $\mathbf{r}'(t) = (-\sin t, 1/2\cos t), \ -\pi/2 \le t \le \pi/2$

$$\mathbf{n}(t) = (1/2\cos t, \sin t), \ -\pi/2 \le t \le \pi/2$$

We see that $\mathbf{n}(t)$ is normal to the curve since $\mathbf{r}'(t) \cdot \mathbf{n}(t) = 0$ for every *t*. It points outward since it is never 0 and $\mathbf{n}(0) = (1/2, 0)$ points outward.

(b) Find the flux of *F* across *C*, moving from inside the ellipse to outside the ellipse. If you couldn't do (a), use $\mathbf{r}(t) = (\cos t, \sin t)$ and $\mathbf{n}(t) = (\cos t, \sin t)$. (3 points) **SOLUTION:**

Flux of *F* across *C* from inside to outside = $\int_C F \cdot \mathbf{u} ds$, where **u** is an outward pointing unit normal. For the choice of **n** in (*a*), $\mathbf{u} = \mathbf{n}/|\mathbf{n}|$ and $|\mathbf{n}| = |\mathbf{r}'|$ so

$$\int_{C} (2, x^{2}) \cdot \frac{\mathbf{n}}{|\mathbf{n}|} ds = \int_{0}^{2\pi} (2, \cos^{2} t) \cdot \frac{(1/2 \cos t, \sin t)}{|\mathbf{r}'(t)|} |\mathbf{r}'(t)| dt$$
$$= \int_{-\pi/2}^{\pi/2} \cos t + \cos^{2} t \sin t dt = [\sin t - 1/3 \cos^{3} t]_{-\pi/2}^{\pi/2} = 1 - (-1) = 2$$

- 2. Let $F(x, y) = (x^3, 2x^2y)$.
 - (a) Find div *F*. (2 points) **SOLUTION:**

div
$$F = 3x^2 + 2x^2 = 5x^2$$

(b) Use the divergence theorem to compute the flux of *F* across the unit circle (with outward pointing normal vector).

SOLUTION:

The divergence theorem for curves (another form of Green's Theorem) states

$$\int_{\mathcal{C}} F \cdot \mathbf{n} ds = \int \int_{D} \operatorname{div} F dA,$$

where *C* is the boundary curve of *D*. So if *C* is the unit circle and *D* is the unit disk we have

$$\int_C (x^3, 2x^2y) \cdot \mathbf{n} ds = \int \int_D 5x^2 dA = \int_0^1 \int_0^{2\pi} 5r^2 \cos^2 \theta r dr d\theta$$
$$= \left(\int_0^1 5r^3 dr\right) \left(\int_0^{2\pi} \cos^2 \theta d\theta\right) = \frac{5}{4}\pi$$