Math 241 - Solutions to Quiz 6- Thursday, December 1

1. Let C be the semi-ellipse $x^{2}+4 y^{2}=1, x \geq 0$ and consider the vector field

$$
F(x, y)=\left(1, x^{2}\right) .
$$

(a) Find a parametrization $\mathbf{r}(t)$ of C and normal vector $\mathbf{n}(t)$ pointing to the outside of the ellipse. (3 points)
SOLUTION:

$$
\begin{gathered}
\mathbf{r}(t)=(\cos t, 1 / 2 \sin t),-\pi / 2 \leq t \leq \pi / 2 \\
\mathbf{r}^{\prime}(t)=(-\sin t, 1 / 2 \cos t),-\pi / 2 \leq t \leq \pi / 2 \\
\mathbf{n}(t)=(1 / 2 \cos t, \sin t),-\pi / 2 \leq t \leq \pi / 2
\end{gathered}
$$

We see that $\mathbf{n}(t)$ is normal to the curve since $\mathbf{r}^{\prime}(t) \cdot \mathbf{n}(t)=0$ for every t. It points outward since it is never 0 and $\mathbf{n}(0)=(1 / 2,0)$ points outward.
(b) Find the flux of F across C, moving from inside the ellipse to outside the ellipse. If you couldn't do (a), use $\mathbf{r}(t)=(\cos t, \sin t)$ and $\mathbf{n}(t)=(\cos t, \sin t)$. (3 points)

SOLUTION:

Flux of F across C from inside to outside $=\int_{C} F \cdot \mathbf{u} d s$, where \mathbf{u} is an outward pointing unit normal. For the choice of \mathbf{n} in $(a), \mathbf{u}=\mathbf{n} /|\mathbf{n}|$ and $|\mathbf{n}|=\left|\mathbf{r}^{\prime}\right|$ so

$$
\begin{gathered}
\int_{C}\left(1, x^{2}\right) \cdot \frac{\mathbf{n}}{|\mathbf{n}|} d s=\int_{0}^{2 \pi}\left(1, \cos ^{2} t\right) \cdot \frac{(1 / 2 \cos t, \sin t)}{\left|\mathbf{r}^{\prime}(t)\right|}\left|\mathbf{r}^{\prime}(t)\right| d t \\
=\int_{-\pi / 2}^{\pi / 2} 1 / 2 \cos t+\cos ^{2} t \sin t d t=\left[1 / 2 \sin t-1 / 3 \cos ^{3} t\right]_{-\pi / 2}^{\pi / 2}=1 / 2-(-1 / 2)=1
\end{gathered}
$$

2. Let $F(x, y)=\left(x^{3},-x^{2} y\right)$.
(a) Find $\operatorname{div} F$. (2 points)

SOLUTION:

$$
\operatorname{div} F=3 x^{2}-x^{2}=2 x^{2}
$$

(b) Use the divergence theorem to compute the flux of F across the unit circle (with outward pointing normal vector).

SOLUTION:

The divergence theorem for curves (another form of Green's Theorem) states

$$
\int_{C} F \cdot \mathbf{n} d s=\iint_{D} \operatorname{div} F d A
$$

where C is the boundary curve of D. So if C is the unit circle and D is the unit disk we have

$$
\begin{gathered}
\int_{C}\left(x^{3},-x^{2} y\right) \cdot \mathbf{n} d s=\iint_{D} 2 x^{2} d A=\int_{0}^{1} \int_{0}^{2 \pi} 2 r^{2} \cos ^{2} \theta r d r d \theta \\
=\left(\int_{0}^{1} 2 r^{3} d r\right)\left(\int_{0}^{2 \pi} \cos ^{2} \theta d \theta\right)=\frac{1}{2} \pi
\end{gathered}
$$

