Math 241 - Solutions to Quiz 6- Thursday, December 1

1. Let C be the semi-ellipse x?> + 4y> = 1, x > 0 and consider the vector field
F(x,y) = (1,x%).

(a) Find a parametrization r(f) of C and normal vector n(f) pointing to the outside of
the ellipse. (3 points)

SOLUTION:

r(t) = (cost,1/2sint), —w/2 <t <7m/2
Y'(t) = (—sint,1/2cost), —/2 <t < 71/2

n(t) = (1/2cost,sint), —m/2 <t < 7/2
We see that n(t) is normal to the curve since r'(¢) - n(t) = 0 for every t. It points
outward since it is never 0 and n(0) = (1/2,0) points outward.

(b) Find the flux of F across C, moving from inside the ellipse to outside the ellipse. If
you couldn’t do (a), use r(t) = (cost,sint) and n(f) = (cost,sint). (3 points)

SOLUTION:

Flux of F across C from inside to outside = [ F - uds, where u is an outward pointing
unit normal. For the choice of nin (2), u = n/|n| and |n| = |¢/| so
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2. Let F(x,y) = (x*, —x%y).
(a) Find divF. (2 points)
SOLUTION:
div F = 3x% — x? = 2x?

(b) Use the divergence theorem to compute the flux of F across the unit circle (with
outward pointing normal vector).

SOLUTION:

The divergence theorem for curves (another form of Green’s Theorem) states
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where C is the boundary curve of D. So if C is the unit circle and D is the unit disk

we have
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