Math 241 - Quiz 2 - Tuesday, October 4

1. Let $f(x, y)=\sin x \sin y$.
(a) Find $\nabla f(x, y)$. (1 point)

SOLUTION:

$\nabla f(x, y)=\langle\cos x \sin y, \sin x \cos y\rangle$
(b) Find all critical points of f and use the second derivative test to identify their types. (5 points)

SOLUTION:

The system $\cos x \sin y=0$ and $\sin x \cos y=0$ is solved if either $\cos x=\cos y=0$ or $\sin y=\sin x=0$. Notice that we cannot have $\cos x=0$ and $\sin x=0$ since $\cos ^{2} x+\sin ^{2} y=1$. We have:

$$
\cos x=\cos y=0 \Rightarrow \begin{cases}x=\frac{\pi}{2}+n \pi & n \text { is any integer } \tag{1}\\ y=\frac{\pi}{2}+m \pi & m \text { is any integer }\end{cases}
$$

or

$$
\sin y=\sin x=0 \Rightarrow \begin{cases}x=n \pi & n \text { is any integer } \tag{2}\\ y=m \pi & m \text { is any integer }\end{cases}
$$

To use the second derivative test, we compute $f_{x x}=-\sin x \sin y, f_{y y}=-\sin x \sin y$, and $f_{x y}=\cos x \cos y$. Call the Hessian D. We then have $D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=$ $(\sin x \sin y)^{2}-(\cos x \cos y)^{2}$. In case (2) above $D=-(\cos x \cos y)^{2}=-1<0$ (remember we have $\cos ^{2} x+\sin ^{2} x=1$ so if $\sin x=0$ then $\cos ^{2} x=1$). So all the points in (2) are saddle points. In case (1) above $D=(\sin x \sin y)^{2}=1>0$, so we then analyze $f_{x x}=-\sin x \sin y$ for $x=\frac{\pi}{2}+n \pi$ and $y=\frac{\pi}{2}+m \pi$. Notice that $\sin (\pi / 2+n \pi)$ is 1 if n is even and -1 if n is odd. This can be stated compactly by writing $\sin (\pi / 2+n \pi)=(-1)^{n}$. We have

$$
\begin{aligned}
f_{x x}(\pi / 2+n \pi, \pi / 2+m \pi) & =\sin (\pi / 2+n \pi) \cos (\pi / 2+m \pi) \\
& =-(-1)^{n}(-1)^{m} \\
& =(-1)^{m+n+1}
\end{aligned}
$$

Hence $f_{x x}>0$ when $m+n$ is odd and $f_{x x}<0$ when $m+n$ is even. The table below summarizes these findings:

Point	$\min / \max /$ saddle
$(\pi / 2+n \pi, \pi / 2+m \pi)$ with $m+n$ odd	\min
$(\pi / 2+n \pi, \pi / 2+m \pi)$ with $m+n$ even	\max
$(n \pi, m \pi)$	saddle

For instance, if we restrict to the box $-\pi / 2 \leq x \leq \pi / 2$ and $-\pi / 2 \leq y \leq \pi / 2$ then we have 5 critical points: $(-\pi / 2,-\pi / 2)$ and $(\pi / 2, \pi / 2)$ are both maximums, $(-\pi / 2, \pi / 2)$ and $(\pi / 2,-\pi / 2)$ are both minimums, and $(0,0)$ is a saddle point.

(OVER)

2. Use the method of Lagrange multipliers to find the closest point to $P=(-3,1)$ on the line $4 x-3 y=5$. (4 points)

SOLUTION:

Minimize $D=(x+3)^{2}+(y-1)^{2}$, the function measuring distance from P to (x, y), subject to the restraint $g=0$ where $g=4 x-3 y-5$. We have $\nabla D=\langle 2(x+3), 2(y-2)\rangle$ and $\nabla g=\langle 4,-3\rangle$. Using the method of Lagrange multipliers we get the system of equations:

$$
\begin{array}{r}
(x+3)=2 \lambda \\
2(y-2)=-3 \lambda
\end{array}
$$

Solving for x and y in terms of λ we get $x=2 \lambda-3$ and $y=-3 / 2 \lambda+2$. Plugging these values for x and y into $4 x-3 y-5=0$ we obtain that $\lambda=8 / 5$ and so $x=1 / 5$ and $y=-7 / 5$.

1. Let $f(x, y)=\cos x \cos y$.
(a) Find $\nabla f(x, y)$. (1 point)

SOLUTION:

$\nabla f(x, y)=\langle-\sin x \cos y,-\cos x \sin y\rangle$
(b) Find all critical points of f and use the second derivative test to identify their types. (5 points)

SOLUTION:

The system $-\sin x \cos y=0$ and $-\cos x \sin y=0$ is solved if either $\cos x=\cos y=0$ or $\sin y=\sin x=0$. Notice that we cannot have $\cos x=0$ and $\sin x=0$ since $\cos ^{2} x+\sin ^{2} y=1$. We have:

$$
\cos x=\cos y=0 \Rightarrow \begin{cases}x=\frac{\pi}{2}+n \pi & n \text { is any integer } \tag{1}\\ y=\frac{\pi}{2}+m \pi & m \text { is any integer }\end{cases}
$$

or

$$
\sin y=\sin x=0 \Rightarrow \begin{cases}x=n \pi & n \text { is any integer } \tag{2}\\ y=m \pi & m \text { is any integer }\end{cases}
$$

To use the second derivative test, we compute $f_{x x}=-\cos x \cos y, f_{y y}=-\cos x \cos y$, and $f_{x y}=\sin x \sin y$. Call the Hessian D. We then have $D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=$ $(\cos x \cos y)^{2}-(\sin x \sin y)^{2}$. In case (1) above $D=-(\sin x \sin y)^{2}=-1<0$ (remember we have $\cos ^{2} x+\sin ^{2} x=1$ so if $\cos x=0$ then $\sin ^{2} x=1$). So all the points in (1) are saddle points. In case (2) above $D=(\cos x \cos y)^{2}=1>0$, so we then analyze $f_{x x}=-\cos x \cos y$ for $x=n \pi$ and $y=m \pi$. Notice that $\cos (n \pi)$ is 1 if n is even and -1 if n is odd. This can be stated compactly by writing $\cos (n \pi)=(-1)^{n}$. We have

$$
\begin{aligned}
f_{x x}(n \pi, m \pi) & =-\cos (n \pi) \cos (m \pi) \\
& =-(-1)^{n}(-1)^{m} \\
& =(-1)^{m+n+1}
\end{aligned}
$$

Hence $f_{x x}>0$ when $m+n$ is odd and $f_{x x}<0$ when $m+n$ is even. The table below summarizes these findings:

Point	$\min / \max /$ saddle
$(n \pi, m \pi)$ with $m+n$ odd	\min
$(n \pi, m \pi)$ with $m+n$ even	\max
$(\pi / 2+n \pi, \pi / 2+m \pi)$	saddle

For instance, if we restrict to the box $0 \leq x \pi$ and $0 \leq y \leq \pi$ then we have 5 critical points: $(0,0)$ and (π, π) are both maximums, $(0, \pi)$ and $(\pi, 0)$ are both minimums, and $(\pi / 2, \pi / 2)$ is a saddle point.

(OVER)

2. Use the method of Lagrange multipliers to find the closest point to $P=(-3,1)$ on the line $4 x-3 y=-5$. (4 points)

SOLUTION:

Minimize $D=(x+3)^{2}+(y-1)^{2}$, the function measuring distance from P to (x, y), subject to the restraint $g=0$ where $g=4 x-3 y+5$. We have $\nabla D=\langle 2(x+3), 2(y-2)\rangle$ and $\nabla g=\langle 4,-3\rangle$. Using the method of Lagrange multipliers we get the system of equations:

$$
\begin{array}{r}
(x+3)=2 \lambda \\
2(y-2)=-3 \lambda
\end{array}
$$

Solving for x and y in terms of λ we get $x=2 \lambda-3$ and $y=-3 / 2 \lambda+2$. Plugging these values for x and y into $4 x-3 y+5=0$ we obtain that $\lambda=4 / 5$ and so $x=-7 / 5$ and $y=-1 / 5$.

Math 241 - Quiz 2 - Tuesday, October 4

Your name here:

Version 3

1. Let $f(x, y)=\cos x \sin y$.
(a) Find $\nabla f(x, y)$. (1 point)

SOLUTION:

$\nabla f(x, y)=\langle-\sin x \sin y, \cos x \cos y\rangle$
(b) Find all critical points of f and use the second derivative test to identify their types. (5 points)

SOLUTION:

The system $-\sin x \sin y=0$ and $\cos x \cos y=0$ is solved if either $\cos x=\sin y=0$ or $\sin x=\cos y=0$. Notice that we cannot have $\cos x=0$ and $\sin x=0$ since $\cos ^{2} x+\sin ^{2} y=1$. We have:

$$
\cos x=\sin y=0 \Rightarrow \begin{cases}x=\frac{\pi}{2}+n \pi & n \text { is any integer } \tag{1}\\ y=m \pi & m \text { is any integer }\end{cases}
$$

or

$$
\sin x=\cos y=0 \Rightarrow \begin{cases}x=n \pi & n \text { is any integer } \tag{2}\\ y=\pi / 2+m \pi & m \text { is any integer }\end{cases}
$$

To use the second derivative test, we compute $f_{x x}=-\cos x \sin y, f_{y y}=-\cos x \sin y$, and $f_{x y}=-\sin x \cos y$. Call the Hessian D. We then have $D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=$ $(\cos x \sin y)^{2}-(\sin x \cos y)^{2}$. In case (1) above $D=-(\sin x \cos y)^{2}=-1<0$ (remember we have $\cos ^{2} x+\sin ^{2} x=1$ so if $\cos x=0$ then $\sin ^{2} x=1$). So all the points in (1) are saddle points. In case (2) above $D=(\cos x \sin y)^{2}=1>0$, so we then analyze $f_{x x}=-\cos x \sin y$ for $x=n \pi$ and $y=\pi / 2+m \pi$. Notice that $\cos (n \pi)$ is 1 if n is even and -1 if n is odd and $\sin (\pi / 2+m \pi)$ is 1 if m is even and -1 if m is odd. This can be stated compactly by writing $\cos (n \pi)=(-1)^{n}$ and $\sin (\pi / 2+m \pi)=(-1)^{m}$. We have

$$
\begin{aligned}
f_{x x}(n \pi, \pi / 2+m \pi) & =-\cos (n \pi) \sin (\pi / 2+m \pi) \\
& =-(-1)^{n}(-1)^{m} \\
& =(-1)^{m+n+1}
\end{aligned}
$$

Hence $f_{x x}>0$ when $m+n$ is odd and $f_{x x}<0$ when $m+n$ is even. The table below summarizes these findings:

Point	$\min / \max /$ saddle
$(n \pi, \pi / 2+m \pi)$	\min
with $m+n$ odd	
$(n \pi, \pi / 2+m \pi)$ with $m+n$ even	\max
$(\pi / 2+n \pi, m \pi)$	saddle

For instance, if we restrict to the box $0 \leq x \pi$ and $-\pi / 2 \leq y \leq \pi / 2$ then we have 5 critical points: $(0, \pi / 2)$ and $(\pi,-\pi / 2)$ are both maximums, $(0,-\pi / 2)$ and $(\pi, \pi / 2)$ are both minimums, and $(\pi / 2,0)$ is a saddle point.

(OVER)

2. Use the method of Lagrange multipliers to find the closest point to $P=(-3,1)$ on the line $4 x-3 y=-10$. (4 points)

SOLUTION:

Minimize $D=(x+3)^{2}+(y-1)^{2}$, the function measuring distance from P to (x, y), subject to the restraint $g=0$ where $g=4 x-3 y+10$. We have $\nabla D=\langle 2(x+3), 2(y-2)\rangle$ and $\nabla g=\langle 4,-3\rangle$. Using the method of Lagrange multipliers we get the system of equations:

$$
\begin{array}{r}
(x+3)=2 \lambda \\
2(y-2)=-3 \lambda
\end{array}
$$

Solving for x and y in terms of λ we get $x=2 \lambda-3$ and $y=-3 / 2 \lambda+2$. Plugging these values for x and y into $4 x-3 y+10=0$ we obtain that $\lambda=4 / 5$ and so $x=-11 / 5$ and $y=7 / 5$.

