Math 241 - Quiz 2 - Tuesday, October 4

Your name here:

- 1. Let $f(x, y) = \sin x \sin y$.
 - (a) Find $\nabla f(x, y)$. (1 point)

 $\nabla f(x,y) =$

(b) Find all critical points of *f* and <u>use the second derivative test</u> to identify their types. (5 points)

Critical point:	(,)	is a	min / max / saddle	(circle one).
Critical point:	(1)	is a	min / max / saddle	(circle one).
Critical point:	(,)	is a	min / max / saddle	(circle one).
Critical point:	(1)	is a	min / max / saddle	(circle one).
Critical point:	(,)	is a	min / max / saddle	(circle one).

(OVER)

2. Use the method of Lagrange multipliers to find the closest point to P = (-3, 1) on the line 4x - 3y = 5. (4 points)

x=

,

y=

Math 241 - Quiz 2 - Tuesday, October 4

Your name here:

- 1. Let $f(x, y) = \cos x \cos y$.
 - (a) Find $\nabla f(x, y)$. (1 point)

(b) Find all critical points of *f* and <u>use the second derivative test</u> to identify their types. (5 points)

Critical point:	(,)	is a	min / max / saddle	(circle one).
Critical point:	(,)	is a	min / max / saddle	(circle one).
Critical point:	(,)	is a	min / max / saddle	(circle one).
Critical point:	(,)	is a	min / max / saddle	(circle one).
Critical point:	(,)	is a	min / max / saddle	(circle one).

(OVER)

Version 2

2. Use the method of Lagrange multipliers to find the closest point to P = (-3, 1) on the line 4x - 3y = -5. (4 points)

x=

,

y=

Math 241 - Quiz 2 - Tuesday, October 4

Your name here:

- 1. Let $f(x, y) = \cos x \sin y$.
 - (a) Find $\nabla f(x, y)$. (1 point)

(b) Find all critical points of *f* and <u>use the second derivative test</u> to identify their types. (5 points)

(OVER)

Version 3

2. Use the method of Lagrange multipliers to find the closest point to P = (-3, 1) on the line 4x - 3y = -10. (4 points)

x=

,

y=