Math 241 - Quiz 3 - Thursday, October 13

Your name here:

1. Find the arc length of the curve C described by $x=y^{3 / 2}$ and with endpoints $(0,0)$ and $\left(\frac{8}{3 \sqrt{3}}, \frac{4}{3}\right) .(4$ points $)$

Arc Length $=$
2. Let

$$
\mathbf{F}(x, y)=\left(y^{2} \cos x, 2 y \sin x+1\right)
$$

and let C be the curve from $(0,0)$ to $\left(\frac{\pi}{2}, \frac{\pi^{3}}{8}\right)$ parametrized by $\mathbf{r}(t)=\left(t, t^{3}\right)$. Use the Fundamental Theorem for Line Integrals to compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. (4 points)

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=
$$

3. You are asked to paint one side of a fence. The fence is not straight; the curve traced out by the base is a quarter circle with radius 2 . For convenience, let us imagine this is the quarter circle in the first quadrant (with endpoints $(2,0)$ and $(0,2)$). The height of the fence varies according to the x coordinate by the function $6-\frac{x}{10}$.
Set up, but do not solve, an integral to measure the area of the fence to be painted. (2 points)
