Math 241 - Quiz 5- Thursday, November 10

Your name here:

1. Let P be the parallelogram in the plane in the figure to the right. Write C for the boundary curve of P.
(a) Let $F(x, y)=\left(-y^{2}+y, x^{2}+y\right)$. Use Green's theorem to rewrite $\int_{C} F \cdot d \mathbf{r}$ as a double integral. (2 points)

$$
\int_{C} F \cdot d \mathbf{r}=
$$

(b) Use a change of coordinates to rewrite your answer from part (a) as a double integral over the unit square $[0,1] \times[0,1]$. (3 points)

(c) Evaluate the integral you found in part (c). (2 points)

2. Let S be the surface parametrized by $\mathbf{r}(u, v)=\left(u^{2}+1, v^{3}+1, u+v\right)$. Find an equation for the tangent plane to S at the point $\mathbf{r}(1,1)$. (3 points)

