Math 241 - Quiz 6- Thursday, December 1

Your name here:

1. Let *C* be the semi-ellipse $x^2 + 4y^2 = 1$, $x \ge 0$ and consider the vector field

$$F(x,y) = (2,x^2).$$

(a) Find a parametrization $\mathbf{r}(t)$ of *C* and normal vector $\mathbf{n}(t)$ pointing to the outside of the ellipse. (3 points)

$$\mathbf{r}(t) = ($$
 ,), $\leq t \leq$
 $\mathbf{n}(t) = ($,)

(b) Find the flux of *F* across *C*, moving from inside the ellipse to outside the ellipse. If you couldn't do (a), use $\mathbf{r}(t) = (\cos t, \sin t)$ and $\mathbf{n}(t) = (\cos t, \sin t)$. (3 points)

- 2. Let $F(x, y) = (x^3, 2x^2y)$.
 - (a) Find div *F*. (2 points)

 $\operatorname{div} F =$

(b) Use the divergence theorem to compute the flux of *F* across the unit circle (with outward pointing normal vector).