1. (a) Show that if \mathbf{u} is any vector then $\mathbf{u} \times \mathbf{u}=\mathbf{0}$.

SOLUTION:

We have

$$
\|\mathbf{u} \times \mathbf{u}\|=\|\mathbf{u}\|^{2} \sin \theta=\|\mathbf{u}\|^{2} \cdot 0=0
$$

since the angle between the \mathbf{u} and itself is zero.
(b) If \mathbf{u} and \mathbf{v} are any two nonzero vectors such that $\mathbf{u} \times \mathbf{v}=\mathbf{0}$, what can you say about the vectors \mathbf{u} and \mathbf{v} ?

SOLUTION:

$\mathbf{u} \times \mathbf{v}=\mathbf{0}$ if and only if $\|\mathbf{u} \times \mathbf{v}\|=0$ if and only if $\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta=0$ if and only if $\theta=0$ or $\theta=\pi$. So $\mathbf{u} \times \mathbf{v}=0$ if and only if \mathbf{u} and \mathbf{v} are parallel.
(c) Let \mathbf{u} and \mathbf{v} be nonzero vectors that are not parallel to each other. Show that the vector

$$
\mathbf{u} \times(\mathbf{u} \times \mathbf{v})
$$

can never be zero.

SOLUTION:

Since \mathbf{u} and \mathbf{v} are not parallel, $\mathbf{u} \times \mathbf{v} \neq 0$ by the solution to part b. Since $\mathbf{u} \times \mathbf{v}$ is perpendicular to \mathbf{u} (hence in particular not parallel to \mathbf{u}), we must have that $\mathbf{u} \times$ $(\mathbf{u} \times \mathbf{v}) \neq 0$ by part b.
2. Suppose that $\mathbf{v} \cdot \mathbf{w}=0$. Find an expression for $\|\mathbf{v} \times \mathbf{w}\|$ (in terms of \mathbf{v} and \mathbf{w}).

SOLUTION:

$\mathbf{v} \cdot \mathbf{w}=0$ implies that \mathbf{v} and \mathbf{w} are perpendicular to each other. So

$$
\|\mathbf{v} \times \mathbf{w}\|=\|\mathbf{v}\|\|\mathbf{w}\| \sin \theta=\|\mathbf{v}\|\|\mathbf{w}\| \sin 0=\|\mathbf{v}\|\|\mathbf{w}\|
$$

3. (Volume of Prisms) Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors. Consider the prism (parallelepiped) with vertex at the origin and with sides given by the vectors \mathbf{u}, \mathbf{v}, and \mathbf{w}. The formula for the volume of a prism, like that of a cylinder, is

$$
\text { volume }=\text { base } \cdot \text { height }
$$

(a) Consider the face containing \mathbf{u} and \mathbf{v} as the "base", give the formula for the area of the base.

SOLUTION:

$\|\mathbf{u} \times \mathbf{w}\|$ is the area of the parallelogram spanned by \mathbf{u} and \mathbf{w}, so in this case it is the area of the base.
(b) Find a formula for the height. This formula should be expressed in terms of $\mathbf{u}, \mathbf{v}, \mathbf{w}$ and the angle θ between \mathbf{w} and the plane containing \mathbf{u} and \mathbf{v}.

SOLUTION:

In terms of the angle θ between \mathbf{w} and the plane containing \mathbf{u} and \mathbf{v}, the height of the prism is $\|\mathbf{w}\| \sin \theta$. We can also find the height by taking the magnitude of the projection of \mathbf{w} onto a normal vector to the plane spanned by \mathbf{u} and \mathbf{v}. Note that $\mathbf{u} \times \mathbf{v}$ is such a normal vector, so we have

$$
\begin{aligned}
\text { height } & =\text { magnitude of the projection of } \mathbf{w} \text { onto } \mathbf{u} \times \mathbf{v} \\
& =\frac{\mathbf{w} \cdot(\mathbf{u} \times \mathbf{v})}{\|\mathbf{u} \times \mathbf{v}\|}
\end{aligned}
$$

(c) Put your answers together to arrive at a formula for the volume of the prism.

SOLUTION:

Multiply the answers from a and b to obtain

$$
\text { Volume }=\mathbf{w} \cdot(\mathbf{u} \times \mathbf{v})
$$

4. (A quadric surface in nonstandard form) Consider the surface described by the equation

$$
4 x^{2}-4 x y+4 y^{2}-10 x+2 y-2 z+9=0
$$

(a) Introduce new variables $u=x+y$ and $v=x-y$. Solve for x and y in terms of u and v.

SOLUTION:

$$
\begin{aligned}
& x=\frac{u+v}{2} \\
& y=\frac{u-v}{2}
\end{aligned}
$$

(b) Substitute your answer above into the original equation to get a new equation in terms of u, v, and z.

SOLUTION:

After substituting and simplifying we obtain $u^{2}-4 u+3 v^{2}-6 v=2 z-9$.
(c) Complete the square in both u and v to in order to arrive at a quadric equation in "standard form".

SOLUTION:

From completing the square we obtain $(u-2)^{2}+3(v-1)^{2}=2(z-1)$.
(d) What type of surface is this? If you don't remember the classification of quadric surfaces, try drawing the cross-sections with the standard coordinate planes.

SOLUTION:

When we set $z=c$ for $c>0$ we obtain cross sections which are ellipses. If we fix u or v we get parabolas. The surface is an elliptic paraboloid (image on next page).

