1. Consider the function

$$
f(x, y)=\frac{2 x y}{x^{2}+y^{2}}
$$

(a) What does this function look like along a line $y=m x$ ?

## SOLUTION:

Plugging in $m x$ for $y$ and simplifying we get $f(x, m x)=\frac{2 m^{2}}{1+m^{2}}$. So $f$ is constant along such lines.
(b) Sketch the graph of $f(x, y)$.

SOLUTION:

2. Consider the function

$$
f(x, y)=x y
$$

(a) Sketch the level sets of $f$.

SOLUTION:

(b) Sketch the graph of $f(x, y)$. What is the name of this surface?

SOLUTION:


This is a hyperbolic paraboloid.
3. Let $f(x, y)=3 x+5 y-1$. This problems deals with

$$
\lim _{(x, y) \rightarrow(1,1)} 3 x+5 y-1
$$

(a) Let $\varepsilon=1$. Find a $\delta>0$ such that if $\|(x, y)-(1,1)\|<\delta$, then $|f(x, y)-7|<\epsilon$.

SOLUTION:
Work backwards. We start with the inequality $|3 x+5 y-1-7|<1$ or $-1<3(x-$ $1)+5(y-1)<1$. Notice that if $-1 / 6<(x-1)<1 / 6$ and $-1 / 10<(y-1)<1 / 10$ then the inequality is satisfied. This gives a rectangle centered at $(1,1)$ so that if $(x, y)$ is inside that rectangle, then $|f(x, y)-7|<1$. Now put a smaller circle centered at $(1,1)$ inside of that rectangle, say with radius $1 / 10$. If $(x, y)$ is inside the circle, then it is also inside the rectangle. So $\delta=1 / 10$ works.
(b) Now find a $\delta>0$ for arbitrary $\varepsilon$ (your answer should be in terms of $\varepsilon$ ).

## SOLUTION:

Follow exactly the steps of part $a$ replacing 1 with $\varepsilon$. For the rectangle we get $-\varepsilon / 6<$ $(x-1)<\varepsilon / 6$ and $-\varepsilon / 10<(y-1)<\varepsilon / 10$. So $\delta=\varepsilon / 10$ works.
4. In class, we showed that

$$
\lim _{(x, y) \rightarrow(1,0)} \frac{x}{y}
$$

does not exist, by approaching the point $(1,0)$ along different lines. This can also be shown directly from the $\varepsilon, \delta$ definition. To do this, for each possible real number $L$, you must show that the limit cannot be $L$.
(a) Let $L$ be any real number. For the value $\varepsilon=1$, show that no matter which $\delta>0$ is chosen, there is always a point $(x, y)$ such that $\|(x, y)-(1,0)\|<\delta$ but $\left|\frac{x}{y}-L\right| \geq 1$. This shows that the limit is not $L$.
(Hint: Take any value for $x$ in the interval $(1-\delta, 1+\delta)$. Show that there is a value for $y$ that makes the above inequalities true.)

## SOLUTION:

We want $\delta$ to be small, so we may as well assume that $\delta<1 / 2$. This makes sure that $x \neq 0$. Now we find $(x, y)$ so that $\|(x, y)-(1,0)\|<\delta$ and $|x / y-L|>1$. Let's see if we can do this assuming that $x=1$. Then we must find a $y$ with $|y|<\delta$ so that $|1 / y-L|>1$. It is pretty clear that we just need to make $y$ small. If we take $0<y<1 /(|L|+1)$ then $1 / y>|L|+1$ and $1 / y-L>|L|+1-L>1$ just like we wanted. So if we take $x=1$ and $y=$ the minimum of $\delta$ and $1 /(|L|+1)$, then we are guaranteed that $\|(x, y)-(1,0)\|<\delta$ and $\left|\frac{x}{y}-L\right| \geq 1$.
(b) More generally, show that for any $\varepsilon>0$, no good $\delta$ can be found.

## SOLUTION:

Follow the steps as in part $a$ replacing 1 by $\varepsilon$. Take $x=1$ and $0<y<\min (1 /(|L|+$ $\varepsilon), \delta)$. Then $\|(x, y)-(1,0)\|<\delta$ and $\left|\frac{x}{y}-L\right| \geq \varepsilon$

