Solutions to Worksheet for Tuesday, October 6, 2011

1. (a) Sketch the first-octant portion of the sphere $x^{2}+y^{2}+z^{2}=5$. Check that $P=$ $(1,1, \sqrt{3})$ is on this sphere and add this point to your picture.

SOLUTION:

$1^{2}+1^{2}+(\sqrt{3})^{2}=5$ so this is on the sphere.

(b) Find a function $f(x, y)$ whose graph is the top-half of the sphere.

SOLUTION:

$$
f(x, y)=\sqrt{5-x^{2}-y^{2}}
$$

(c) Imagine an ant walking along the surface of the sphere. It walks down the sphere along the path C that passes through the point P in the direction parallel to the $y z$ plane. Draw this path in your picture.

SOLUTION:

See above.
(d) Use the function from (b) to find a parameterization $\mathbf{r}(t)$ of the ant's path along the portion of the sphere shown in your picture. Specify the domain for \mathbf{r}, i.e. the initial time when the ant is at P and the final time when it hits the $x y$-plane.

SOLUTION:

$x=1$ along this path and $f(1, y)=\sqrt{4-y^{2}}$, so setting $y=t$ we get the parametrization

$$
\mathbf{r}(t)=\left(1, t, \sqrt{4-t^{2}}\right)
$$

2. Consider the curve C in \mathbb{R}^{3} given by

$$
\mathbf{r}(t)=\left(e^{t} \cos t\right) \mathbf{i}+2 \mathbf{j}+\left(e^{t} \sin t\right) \mathbf{k}
$$

(a) Calculate the length of the segment of C between $\mathbf{r}(0)$ and $\mathbf{r}\left(t_{0}\right)$. Check your answer with the instructor.

SOLUTION:
Length $=\int_{0}^{t_{0}}\left|r^{\prime}(t)\right| d t=\int_{0}^{t_{0}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t$. We have $\frac{d x}{d t}=e^{t}(\cos t-$ $\sin t), \frac{d y}{d t}=0$, and $\frac{d z}{d t}=e^{t}(\sin t+\cos t)$, so

$$
\begin{aligned}
\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2} & =e^{2 t}\left((\cos t-\sin t)^{2}+(\sin t+\cos t)^{2}\right) \\
& =e^{2 t}\left(2 \cos ^{2} t+2 \sin ^{2} t-2 \cos t \sin t+2 \cos t \sin t\right) \\
& =2 e^{2 t}
\end{aligned}
$$

So

$$
\int_{0}^{t_{0}}\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{0}^{t_{0}} \sqrt{2 e^{2 t}} d t=\int_{0}^{t_{0}} e^{t} \sqrt{2} d t=\sqrt{2}\left(e^{t_{0}}-1\right)
$$

(b) Suppose $h: \mathbb{R} \rightarrow \mathbb{R}$ is a function. We can get another parameterization of C by considering the composition

$$
\mathbf{f}(s)=\mathbf{r}(h(s))
$$

This is called a reparameterization. Find a choice of h so that
i. $\mathbf{f}(0)=\mathbf{r}(0)$
ii. The length of the segment of C between $f(0)$ and $\mathbf{f}(s)$ is s. (This is called parameterizing by arc length.)

Check your answer with the instructor.

SOLUTION:

These two properties tell us that s needs to be $\int_{0}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u$. From our computation in $(a), s=\sqrt{2}\left(e^{t}-1\right)$. Since \mathbf{r} is in terms of t, our function $h(s)$ is going to be the function that gives s in terms of t, i.e. $h(s)=t$. We get this by solving for t in the equation $s=\sqrt{2}\left(e^{t}-1\right)$, so $h(s)=\ln (s / \sqrt{2}+1)$.
(c) Without calculating anything, what is $\left|\mathbf{f}^{\prime}(s)\right|$?

SOLUTION:

Remember $s(t)=\int_{0}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u$ so by the fundamental theorem of calculus, $s^{\prime}(t)=$ $\left|\mathbf{r}^{\prime}(t)\right|$. Now by the chain rule $\mathbf{r}^{\prime}(t)=\mathbf{f}^{\prime}(s(t)) s^{\prime}(t)$. Taking magnitudes of both sides gives $\left|\mathbf{r}^{\prime}(t)\right|=\left|\mathbf{f}^{\prime}(s(t))\right| \cdot\left|s^{\prime}(t)\right|$. By the first line $s^{\prime}(t)=\left|\mathbf{r}^{\prime}(t)\right|$. This gives that $\left|\mathbf{f}^{\prime}(s(t))\right|=1$. So $\left|\mathbf{f}^{\prime}(s)\right|=1$.
(d) Draw a sketch of C.

SOLUTION:

3. Consider the curve C given by the parameterization $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ where $\mathbf{r}(t)=\left(\sin t, \cos t, \sin ^{2} t\right)$.
(a) Show that C is in the intersection of the surfaces $z=x^{2}$ and $x^{2}+y^{2}=1$.

SOLUTION:

The z coordinate of $\mathbf{r}(t)$ is the square of the x-coordinate. Also the sum of the squares of the x and y coordinates of $\mathbf{r}(t)$ is $\sin ^{2} t+\cos ^{2} t=1$ so $\mathbf{r}(t)$ is in the intersection of these two surfaces.
(b) Use (a) to help you sketch the curve C.

SOLUTION:

4. As in 2(b), consider a reparameterization

$$
\mathbf{f}(s)=\mathbf{r}(h(s))
$$

of an arbitrary vector-valued function $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$. Use the chain rule to calculate $\left|\mathbf{f}^{\prime}(s)\right|$ in terms of \mathbf{r}^{\prime} and h^{\prime}.

SOLUTION:

$\mathbf{f}^{\prime}(s)=\mathbf{r}^{\prime}(h(s)) h^{\prime}(s)$ by the chain rule. Taking magnitudes of both sides we have $\left|\mathbf{f}^{\prime}(s)\right|=$ $\left|\mathbf{r}^{\prime}(h(s))\right| \cdot\left|h^{\prime}(s)\right|$.

