1. Consider the function $f(x, y)=8 y$. Let C be the curve $x=y^{2}-1$ between the points $P=(-1,0)$ and $Q=(0,1)$.
(a) Find a parametrization $\mathbf{r}(t)$ for C starting at P and ending at Q.

SOLUTION:
$\mathbf{r}(t)=\left\langle t^{2}-1, t\right\rangle, 0 \leq t \leq 1$.
(b) Using the parametrization from (a), compute $\int_{C} f d s$.

SOLUTION:
$\int_{C} f d s=\int_{0}^{1}(8 t) \sqrt{1+4 t^{2}} d t=\int_{1}^{5} u^{1 / 2} d u=2 / 3\left(5^{3 / 2}-1\right)$, where $u=1+4 t^{2}$.
(c) Find a parametrization $\mathbf{q}(t)$ for C starting at Q and ending at P, and use this to calculate $\int_{C} f d s$. Did you get the same answer as in (b)?
SOLUTION:
$\mathbf{q}(t)=\left\langle(1-t)^{2}-1,1-t\right\rangle, 0 \leq t \leq 1$. For this parametrization,

$$
\int_{C} f d s=\int_{0}^{1} 8(1-t) \sqrt{1+4(1-t)^{2}} d t=\int_{1}^{5} u^{1 / 2} d u=2 / 3\left(5^{3 / 2}-1\right)
$$

where $u=1+4(1-t)^{2}$. This is the same answer as in (b).
(d) Using the two parametrizations from (a) and (c), calculate $\int_{C} f d y$. Do you get the same answer in both cases?

SOLUTION:

For the parametrization from (a) we have

$$
\int_{C} f d y=\int_{0}^{1} 8 t d t=4
$$

while for the parametrization from (c) we have

$$
\int_{C} f d y=\int_{0}^{1} 8(1-t)(-d t)=-4
$$

So the answers differ by a sign change.
(e) Write $\mathbf{F}=\nabla(f)$. Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ and $\int_{C} \mathbf{F} \cdot d \mathbf{q}$. Do you get the same answer in both cases?

SOLUTION:
$\mathbf{F}=\nabla(F)=\langle 0,8\rangle$. We have

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1}\langle 0,8\rangle \cdot\langle 2 t, 1\rangle d t=8
$$

and

$$
\int_{C} \mathbf{F} \cdot d \mathbf{q}=\int_{0}^{1}\langle 0,8\rangle \cdot\langle 2(1-t),-1\rangle=-8
$$

So these answers also differ by a sign.
2. Consider the curve C and vector field \mathbf{F} shown to the $\operatorname{right}(\mathbf{F}(x, y)=\langle 1,1\rangle)$.
(a) Without parameterizing C, evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. (Hint: Use the Fundamental Theorem for Line Integrals.)

SOLUTION:

Set $f=x+y$. Then $\mathbf{F}=\nabla(f)$. Using the Fundamental Theorem for Line Integrals we have $\int_{C} \nabla(f) \cdot d \mathbf{r}=$
 $f(1,1)-f(3,2)=2-5=-3$.
(b) Find a parameterization of C and use it to check your answer in (a) by computing $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ explicitly.

SOLUTION:

Parametrize C by $\mathbf{r}=\langle 3-2 t, 2-t\rangle$, $0 \leq t \leq 1$. So $r^{\prime}(t)=\langle-2,-1\rangle$ and
$\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1}\langle 1,1\rangle \cdot\langle-2,-1\rangle d t=$ $\int_{0}^{1}-3 d t=-3$.
3. Consider the vector field $\mathbf{F}=(-y, x)$.
(a) Let C_{1} be the straight line segment from $(1,0)$ to $(-1,0)$. Compute $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}$.

SOLUTION:
Parametrize C_{1} by $\mathbf{r}(t)=(0, t),-1 \leq t \leq 1$. We have

$$
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{-1}^{1}(0, t) \cdot(1,0) d t=0
$$

(b) Let C_{2} be the upper semicircle (with counter-clockwise orientation). Compute $\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$. SOLUTION:
Parametrize C_{2} by $\mathbf{q}(t)=(\cos t, \sin t), 0 \leq t \leq \pi$. We have

$$
\int_{C_{2}} \mathbf{F} \cdot \mathbf{q}=\int_{0}^{\pi}(-\sin t, \cos t) \cdot(-\sin t, \cos t) d t=\int_{0}^{\pi} 1 d t=\pi
$$

NOTE: This indicates that the vector field is not conservative on any open set containing the two paths C_{1} and C_{2}.
4. Suppose the curve C is contained within a level set of the function f.
(a) From the point of view of the Fundamental Theoerm, why is $\int_{C} \nabla(f) \cdot d \mathbf{r}=0$? SOLUTION:
We will assume $f(x, y)$ is a function of two variables for simplicity. Let C have initial point $\left(x_{0}, y_{0}\right)$ and final point $\left(x_{1}, y_{1}\right)$. Since C is contained in a level curve of f we have $f\left(x_{0}, y_{0}\right)=f\left(x_{1}, y_{1}\right)$. By the Fundamental Theorem of Line Integrals,

$$
\int_{C} \nabla(f) \cdot d \mathbf{r}=f\left(x_{1}, y_{1}\right)-f\left(x_{0}, y_{0}\right)=0
$$

(b) Give a geometric explanation, not using the Fundamental Theorem, for why this line integral should be zero.
Again assume f is a function of 2 variables and that C has initial point $\left(x_{0}, y_{0}\right)$ and final point $\left(x_{1}, y_{1}\right)$. Remember $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ can be interpreted as work done by the force field \mathbf{F} on a particle moving from $\left(x_{0}, y_{0}\right)$ to $\left(x_{1}, y_{1}\right)$. But the force field $\nabla(f)$ is always perpendicular to C since C lies in a level curve of f (remember $\nabla(f)(a, b)$ is perpendicular to the level curve $f(x, y)=f(a, b)$ for every point (a, b) in the domain of f and $\nabla(f)$). So the force field does no work as the particle moves along C.

