1. Evaluate the following integral by reversing the order of integration:

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \sqrt{x^{3}+1} d x d y
$$

(Hint: When you change to $d x d y$, be sure to also change the bounds of integration.) SOLUTION:

We are integrating over the region below:

Changing the order of integration we get

$$
\begin{gathered}
\int_{0}^{1} \int_{\sqrt{y}}^{1} \sqrt{x^{3}+1} d x d y=\int_{0}^{1} \int_{0}^{x^{2}} \sqrt{x^{3}+1} d y d x \\
\int_{0}^{1} \int_{0}^{x^{2}} \sqrt{x^{3}+1} d y d x=\int_{0}^{1} x^{2} \sqrt{x^{3}+1} d x=1 / 3\left[\left(x^{3}+1\right)^{3 / 2}\right]_{0}^{1}=1 / 3\left(2^{3 / 2}-1\right) .
\end{gathered}
$$

2. Consider the region bounded by the curves determined by $-2 x+y^{2}=6$ and $-x+y=$ -1 .
(a) Sketch the region R in the plane.

SOLUTION:

(b) Set up and evaluate an integral of the form $\iint_{R} d A$ that calculates the area of R. SOLUTION:

$$
\int_{-2}^{4} \int_{\frac{y^{2}-6}{2}}^{y+1} d x d y=\int_{-2}^{4} y+1-\frac{y^{2}-6}{2} d y=\left[-1 / 6 y^{3}+1 / 2 y^{2}+4 y\right]_{-2}^{4}=18
$$

3. Consider the region R in the first quadrant which lies above the x-axis, to the right of the y-axis and between the circles of radius 1 and 2 centered at $(0,0)$. Without using polar coordinates, evaluate

$$
\iint_{R} y d A
$$

Hint: You'll have to break R into several simple (Type I and II) regions.

SOLUTION:

Break up the region into two as shown below:

$$
\begin{aligned}
& \iint_{R} y d A=\iint_{A} y d A+\iint_{B} y d A=\int_{0}^{1} \int_{\sqrt{1-x^{2}}}^{\sqrt{4-x^{2}}} y d y d x+\int_{1}^{2} \int_{0}^{\sqrt{4-x^{2}}} y d y d x \\
= & \int_{0}^{1}\left[y^{2} / 2\right]_{\sqrt{1-x^{2}}}^{\sqrt{4-x^{2}}} d x+\int_{1}^{2}\left[y^{2} / 2\right]_{0}^{\sqrt{4-x^{2}}} d x=\int_{0}^{1} 3 / 2 d x+\int_{1}^{2} 1 / 2\left(4-x^{2}\right) d x
\end{aligned}
$$

$$
=7 / 3
$$

4. Evaluate

$$
\int_{-2}^{0} \int_{0}^{\sqrt{4-x^{2}}}\left(x^{2}+y^{2}\right) d y d x
$$

Hint: don't do it directly.

SOLUTION:

The region over which we are integrating is:

Converting to polar we get

$$
\int_{-2}^{0} \int_{0}^{\sqrt{4-x^{2}}}\left(x^{2}+y^{2}\right) d y d x=\int_{\pi / 2}^{\pi} \int_{0}^{2}\left(r^{2}\right) r d r d \theta=2 \pi
$$

